Protein Structure

A Practical Approach

Edited by

T. E. CREIGHTON

European Molecular Biology Laboratory, Heidelberg, Germany

Li	st of Contributors	xix
Al	bbreviations	xxi
1.	Protein molecular weight determination by sodium dodecyl sulfate polyacrylamide gel electrophoresis	1
	Gregory S. Makowski and Melinda L. Ramsby	
	1. Introduction	1
	2. Principles and theory	1
	3. Components of SDS-PAGE Polyacrylamide Sodium dodecyl sulfate Multiphasic buffers	2 2 3 4
	4. Performing SDS-PAGE Slab SDS-PAGE Preparation of SDS-PAGE gels Staining the gel Calibration proteins and mol. wt determination	5 6 7 12 13
	5. Factors affecting SDS-PAGE Effect of polyacrylamide concentration Effect of cross-linker concentration Effect of resolving gel pH Effect of sample volume Effect of sample reduction	15 15 17 17 20 20
	6. Additional SDS–PAGE systems Gradient gels Other gels	21 21 21
	7. Enzyme activity determination in gels Gelatin zymography Overlay techniques Enzyme elution into free solution	21 21 23 25
	8. Additional SDS-PAGE applications Western blotting Preparation of antigens Radiolabelled proteins	25 25 25 25

	9. Troubleshooting	25
	Gels fail to polymerize	25
	Electrophoresis time too long	26
	Poorly resolved/smeared protein bands Uneven/diffuse dye front migration	26 26
	<u> </u>	
	References	26
	•	
2.	Protein analysis by mass spectrometry	29
	Ole Nørregaard Jensen, Andrej Shevchenko, and Matthias Mann	
	1. Introduction	29
	2. Mass spectrometry	30
	Generating gas phase molecular ions	30
	Mass analysis of molecular ions	31
	Tandem mass spectrometry	31
	3. When and how to use mass spectrometry for protein and	
	peptide characterization	32
	4. Sample preparation for mass spectrometry	33
	Sample purity—a mass spectrometrist's point of view	33
	Solvents used in mass spectrometry	34
	Interfacing chromatographic separation methods to an electrospray	
	mass spectrometer	39
	Sample preparation for nanoelectrospray MS	40
	5. Interpretation of mass spectra	40
	6. Mass analysis of intact proteins	42
	7. Peptide mass mapping	43
	Software that aids the interpretation of mass spectra	44
	Protein identification	47
	8. Peptide sequencing by tandem mass spectrometry	50
	9. Strategies for the analysis of modified proteins:	
	phosphoproteins and peptides	53
	Acknowledgements	54
	Appendix	54
	References	56
	10101011000	50
_		
3.	Immunological detection of proteins of	
	known sequence	59
	Karl Heinz Scheidtmann, Silke Reinartz, and Harald Schlebusch	
		50
	1. Introduction	59

2. Generation of specific antibodies	60
3. Antibodies against synthetic peptides Criteria for selection of peptides	60 60
Coupling of peptide to carrier protein	62
4. Antibodies against bacterially expressed proteins Purification of fusion protein from bacteria	65 65
5. Immunization	67
6. Generation of recombinant antibody fragments in bacteria through recombinant phage	67
7. Testing antisera ELISA	72 72
Testing for antibodies recognizing the protein	73
8. Detection of proteins in cell extracts	73
Preparation of whole cell extracts	73
Preparation of 'soluble' cell extracts	74
Extraction of nuclei	76
Opening cells by 'Douncing' Cell fractionation	77 77
Radiolabelling of cells	78
9. Evaluation of detection methods	79
Western blotting	79
Immunoprecipitation	82
10. Detection of proteins <i>in situ</i>	84
Immunofluorescence	85
Other staining procedures	86
11. Further applications of antibodies	86
Immunoaffinity chromatography	87
Detection of nucleic acids	87
Assays for enzymatic or DNA-binding activities	87
References	88
Identification of common post-translational	
modifications	91
Radha G. Krishna and Finn Wold	
1. Introduction	91
2. General considerations	92
Hydrolysis and amino acid analysis	92
Protein sequencing	92
Mass spectrometry of modified proteins, peptides, and liberated	<u>.</u> .
amino acids	93

4.

	3. Specific cases D-Amino acids Glycoprotein characterization	94 94 99
	Unblocking the N terminus in acetylated proteins Characterization of phosphorylated proteins	104 108
	4. Concluding remarks	112
	References	113
5.	Peptide mapping	117
	Nick A. Morrice and Elizabeth A. Carrey	
	1. Introduction: strategies	117
	2. Cleavage of peptide bonds	118
	Chemical methods	118
	Proteolytic enzymes	120
	Controlled proteolysis and complete proteolysis Proteolysis in SDS solutions	121 128
	3. Separation of polypeptide fragments	129
	Polyacrylamide gel electrophoresis and isoelectric focusing	129
	Chromatography	131
	Capillary zonal electrophoresis (CZE)	132
	Mass spectrometry (MS) Combining techniques to generate maps	134 134
	4. Electroblots as the second or third dimension Electroblotting procedure	137 137
	Identification of polypeptide fragments	137
	5. Sequencing strategies	143
	Use of the electroblot	143
	Sequencing from gel slices	144
	Sequencing from HPLC fractions	144
	Phosphorylated peptides	145
	Acknowledgements	147
	References	148
6.	Counting integral numbers of residues by chemical modification	151
	Michelle Hollecker	131
		4.54
	1. Introduction Advantages of the method	151 151
	Limitations of the method	151

	2. Cysteine residues Choice of reagents for modifying thiol groups specifically Experimental procedure Counting cysteine residues	152 152 153 155
	3. Disulfide bonds Experimental procedures Counting disulfide bonds	155 156 158
	4. Lysine residues Choice of reagent Experimental procedure Counting amino groups	159 159 159 160
	5. Electrophoretic resolution of the modified species Counting cysteine residues and disulfide bonds Counting lysine residues	161 162 162
	References	163
7.	Disulfide bonds between cysteine residues	165
	William R. Gray	
	1. Introduction Planning the general approach	165 166
	2. The classical fragmentation strategy Fragmentation of protein Peptide purification Identification of cystine-containing peptides Identification of subfragments Specific examples	167 167 169 170 172 173
	3. The TCEP strategy Partial reduction Preparation of incompletely reduced peptides (full-length) Labelling the intermediates Identifying the labelled cysteines Comparing disulfide fingerprints with TCEP	174 174 177 178 182 183
	4. Concluding comment	184
	References	185
8.	Analysis of protein conformation by gel electrophoresis	187
	David P. Goldenberg	
	1. Introduction and basic principles	187

	2. Non-denaturing gel electrophoresis of proteins Apparatus	191 191
	Buffer systems	191
	Gel composition	197
	Polymerization catalysts	197
	Sample preparation, application, and electrophoresis	198
	Staining gels	199
	Drying gels	200
	Documentation and quantification of electrophoresis patterns	202
	3. Transverse gradient gel electrophoresis	204
	Apparatus for transverse gradient gel electrophoresis	206
	Solutions for urea gradient gel electrophoresis	207
	Sample preparation and electrophoresis	208
	Interpreting urea gradient gel patterns	212
	References	217
9.	Hydrodynamic properties of proteins	219
	Stephen E. Harding	
	1. Renaissance of hydrodynamic techniques	219
	2. Mass and quaternary structure measurement	220
	Gel filtration and size exclusion chromatography	220
	Dynamic light scattering (DLS)	222
	Sedimentation velocity in the analytical ultracentrifuge	231
	Sedimentation equilibrium	236
	Classical light scattering	240
	3. Shape measurement	246
	Computer programs for conformational analysis	247
4	References	249
10.	How to determine the molar absorbance	
	coefficient of a protein	253
	C. Nick Pace and Franz X. Schmid	
	1. Introduction	253
	2. Absorbance coefficients for tryptophan, tyrosine, and the disulfide bond	254
	3. Calculation of absorbance coefficients from protein reference data	254
	4. Determination of the absorbance coefficient for the unfolded and the folded protein	255

	5. Concluding remarks References	258 259
11.	Optical spectroscopy to characterize protein conformation and conformational changes	261
	Franz X. Schmid	
	1. Introduction	261
	2. Absorbance Spectrophotometers Samples and cuvettes Instrumental settings Experimental protocol for the determination of the difference spectrum between the native and unfolded states of a protein Data interpretation	262 267 268 270 271 273
	3. Fluorescence Fluorescence of the aromatic amino acids Fluorescence of proteins Environmental effects on Tyr and Trp emission Measurement of protein fluorescence Fluorimetric determination of the Trp content of proteins	275 275 275 278 279 286
. 3	4. Circular dichroism CD spectra of native and unfolded proteins Measurement of circular dichroism Measurement of CD spectra of proteins Evaluation of data Determination of protein secondary structure by CD	287 288 288 292 294 295
	References	296
12.	Measuring the conformational stability of a protein	299
	C. Nick Pace and J. Martin Scholtz	
	1. Introduction	299
	2. Selecting a technique to follow unfolding	300
	3. Determining unfolding curves Equilibrium and reversibility Urea and GdmCl unfolding Thermal unfolding	303 303 304 307

	4. Analysing unfolding curves Urea and GdmCl unfolding Thermal unfolding	309 310 313
	5. Determining differences in stability	317
	6. Concluding remarks	320
	Acknowledgements	320
	References	320
13.	Immunochemical analysis of protein conformation	323
	Bertrand Friguet, Lisa Djavadi-Ohaniance, and Michel E. Goldberg	
	1. Introduction	323
	2. Antibody selection: how to obtain the appropriate antibodies Important remarks: what should be remembered?	324 326
	3. Antibody characterization Antibody purification Isotype determination Discrimination between anti-native and anti-denatured antibodies Do the antibodies recognize different epitopes?	328 328 330 330 331
	4. The affinity, a quantitative parameter to analyse conformational changes Peparation of 'fragments antigen binding' (Fab) Stoichiometry determination Are monovalent Fabs always required for affinity measurements in solution?	332 333 334 335
	5. Affinity measurements in solution by competition ELISA Theoretical aspects Rationale Requirements for the determination of K_D Determination of K_D Calculation Determination of K_D with impure antibody	335 335 336 337 339 340 341
	6. Affinity measurement in solution by a radioimmunoassay-based method	342
	7. General considerations about the competition methods	344
	8. Antibodies used as conformational probes	345
	References	346

14.	Stabilization of protein structure by solvents	349
	Serge N. Timasheff and Tsutomu Arakawa	
	1. Introduction	349
	2. Principles of structure stabilization by solvent components	349
	3. Sources of the exclusion	353
	4. Balance between co-solvent exclusion and binding	355
	5. Co-solvent interactions in the denaturation reaction	358
	6. Practical considerations	359
	Acknowledgements	363
	References	363
	_	
Ap]	pendix	365
Ind	ex	373