CONTENTS

CONTRIBUTORS xiii
PREFACE xvii

PART I. VISUALIZATION OF NUCLEIC ACIDS

1. DNA Sequence Localization in Metaphase and Interphase Cells by Fluorescence in Situ Hybridization
   Barbara J. Trask

   I. Introduction 4
   II. Technique Overview 7
   III. Probe Labeling 8
   IV. Blocking DNA Preparation 12
   V. Slide Preparation 13
   VI. Slide Hybridization 18
   VII. Suspension Hybridization 27
   VIII. Conclusions 30
   IX. Supplier Information 31
   References 32

2. Localization of mRNAs by in Situ Hybridization
   Lynne M. Angerer and Robert C. Angerer

   I. Introduction 38
   II. Tissue Preparation 40
   III. Probes 49
   IV. Posthybridization Washes 57
   V. Detection Mechanisms 60
   VI. Comments on Microscopy 65
   VII. Controls and Quantitative Measurements 66
   VIII. Concluding Remarks 68
   References 68

3. Fluorescent Detection of Nuclear RNA and DNA: Implications for Genome Organization
   Carol Villnave Johnson, Robert H. Singer, and Jeanne Bentley Lawrence

   I. Introduction to Technical Development 74
   II. Methods 78
# CONTENTS

III. Cell Preparations 78  
IV. Probe Preparation 84  
V. Detailed Nick-Translation Procedure 85  
VI. Denaturation of Cellular DNA 86  
VII. Hybridization 87  
VIII. Controls Discriminating RNA versus DNA Hybridization 88  
IX. Detection 89  
X. Applications and Discussion 91  
References 96  

4. Visualization of DNA Sequences in Meiotic Chromosomes  
Peter B. Moens and Ronald E. Pearlman  

I. Introduction 101  
II. Surface Spreading of Meiotic Chromosomes 102  
III. In Situ Hybridization 103  
IV. Primed in Situ Labeling 106  
V. Results 107  
References 108  

5. Nucleic Acid Sequence Localization by Electron Microscopic in Situ Hybridization  
Sandya Narayanswami, Nadja Dvorkin, and Barbara A. Hamkalo  

I. Introduction 110  
II. Specimen Preparation 111  
III. Fixation 115  
IV. Prehybridization Treatments 116  
V. Hybridization 117  
VI. Signal Detection 122  
VII. Typical Results 127  
VIII. Summary and Future Applications 130  
References 131  

## PART II. VISUALIZATION OF PROTEINS

6. The Use of Autoantibodies in the Study of Nuclear and Chromosomal Organization  
W. C. Earnshaw and J. B. Rattner  

I. Introduction 136  
II. Identification and Initial Characterization of Autoimmune Sera 136  
III. Characterization of Autoantigens by Light Microscopy 142  
IV. Identification of Nuclear and Chromosomal Antigens Recognized by Autoantisera 157
CONTENTS

V. cDNA Cloning of Chromosomal Autoantigens 164
VI. Conclusions 169
References 170

7. Meiotic Chromosome Preparation and Protein Labeling
   C. Heyting and A. J. J. Dietrich
   I. Introduction 177
   II. Isolation of Synaptonemal Complexes 178
   III. Analysis of Synaptonemal Complex Preparations 189
   IV. Immunocytochemical Labeling of Synaptonemal Complex Proteins 193
   V. Applications and Concluding Remarks 199
References 201

8. Distribution of Chromosomal Proteins in Polytenes
   Chromosomes of Drosophila
   Robert F. Clark, Cynthia R. Wagner, Carolyn A. Craig, and Sarah C. R. Elgin
   I. Introduction 203
   II. Squashing and Staining Protocols 205
   III. Applications and Results 216
   References 225

9. The Use of Monoclonal Antibody Libraries
   H. Saumweber
   I. Monoclonal Antibodies as Versatile Tools for Dissection
      of Nuclear Structure 229
   II. Monoclonal Antibody Libraries to Drosophila Nuclear Proteins 232
   III. Monoclonal Antibody Libraries to Nuclear Proteins of Amphibia 238
   IV. Monoclonal Antibody Libraries to Nuclear Proteins
      from Birds and Mammals 241
   V. Conclusions 244
   References 246

10. Optical Sectioning and Three-Dimensional Reconstruction
    of Diploid and Polytenic Nuclei
    Mary C. Rykowski
    I. Introduction 253
    II. Sample Preparation 258
    III. Image Acquisition and Analysis 265
    IV. Summary 283
       References 284
PART III. IDENTIFYING SPECIFIC MACROMOLECULAR INTERACTIONS

11. Yeast Minichromosomes
   Sharon Y. Roth and Robert T. Simpson
   I. Introduction 289
   II. Methods of Minichromosome Isolation 295
   III. Methods for Mapping Nucleosome Position 304
   IV. Closing Remarks 312
   References 312

12. Nucleosomes of Transcriptionally Active Chromatin: Isolation of Template-Active Nucleosomes by Affinity Chromatography
   Vincent G. Allfrey and Thelma A. Chen
   I. Introduction 315
   II. Methods 321
   III. Advantages and Limitations of the Method 330
   References 332

13. The Nucleoprotein Hybridization Method for Isolating Active and Inactive Genes as Chromatin
   Claudius Vincenz, Jan Fronk, Graeme A. Tank, Karen Findling, Susan Klein, and John P. Langmore
   I. Introduction 338
   II. Materials and Methods 340
   III. Results 345
   IV. Discussion 358
   References 364

14. Protein–DNA Cross-Linking as a Means to Determine the Distribution of Proteins on DNA in Vivo
   David S. Gilmour, Ann E. Rougvie, and John T. Lis
   I. Introduction 370
   II. Ultraviolet Cross-Linking Protocol for Drosophila Cells 372
   III. Alternative Applications 379
   IV. Additional Notes 380
   References 380
15. Protein–DNA Interactions in Vivo—Examining Genes in Saccharomyces cerevisiae and Drosophila melanogaster by Chromatin Footprinting
Melissa W. Hull, Graham Thomas, Jon M. Huibregtse, and David R. Engelke

I. Introduction 384
II. Technical Considerations 386
III. Protocols for DNase I Footprinting of Saccharomyces cerevisiae Chromatin by Primer Extension Techniques 393
IV. Protocols for MPE.Fe(II) Footprinting of Drosophila melanogaster Chromatin by Indirect End-Labeling Techniques 401
References 413

PART IV. RECONSTITUTION OF FUNCTIONAL COMPLEXES

16. Control of Class II Gene Transcription during In Vitro Nucleosome Assembly

I. Introduction 420
II. In Vitro Transcription of Class II Genes 421
III. Nucleosome Assembly under Physiological Conditions 424
IV. Nucleosome Assembly and Transcription 434
V. Conclusions 443
References 444

17. Systems for the Study of Nuclear Assembly, DNA Replication, and Nuclear Breakdown in Xenopus laevis Egg Extracts
Carl Smythe and John W. Newport

I. Introduction 450
II. Obtaining Xenopus Eggs and Isolation of Sperm Chromatin 450
III. Preparation of Xenopus Extracts and Assays Associated with Nuclear Assembly/Disassembly 452
IV. Conclusions and Perspectives 466
References 467

18. In Vitro Nuclear Protein Import Using Permeabilized Mammalian Cells
Stephen A. Adam, Rachel Sterne-Marr, and Larry Gerace

I. Introduction 469
II. Methods 472
III. Discussion 480
References 481
PART V. GENETIC APPROACHES

19. Mutations That Affect Chromosomal Proteins in Yeast  
M. Mitchell Smith

I. Introduction 486  
II. Mutagenesis 487  
III. Manipulation of Mutant Alleles 494  
IV. Analysis of Mutants 506  
References 517

20. Mutations That Affect Nuclear Organization in Yeast  
Ann O. Sperry, Barbara R. Fishel, and W. T. Garrard

I. Introduction 525  
II. Rationale 527  
III. Methods 528  
IV. Further Applications of the Technique 538  
References 539

21. Mutations Affecting Cell Division in Drosophila  
Maurizio Gatti and Michael L. Goldberg

I. Introduction 544  
II. Cell Division in Drosophila 545  
III. Cytological Analysis of Mitosis and Meiosis 547  
IV. Strategies for Isolation of Mitotic Mutants 555  
V. Cytological Phenotypes Displayed by Mitotic Mutants 560  
VI. Molecular Cloning of Drosophila Mitotic Genes 567  
VII. Investigations of Mitotic and Meiotic Genes in Drosophila 577  
VIII. Conclusions and Perspectives 581  
References 582

T. Grigliatti

I. Introduction 588  
II. Position-Effect Variegation—The Phenomenon 590  
III. A Model for Position-Effect Variegation 593  
IV. Alternative Models for Position-Effect Variegation 598  
V. Position-Effect Variegation as an Assay System for Chromosomal Proteins and Chromatin Assembly and Modification Factors 600  
VI. Su(var) Mutations and Chromatin Structure 606  
VII. Dosage Effects of Su(var)* and E(var)* Loci 610
## CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII</td>
<td>Analyses of Cloned Su(var) Loci</td>
<td>612</td>
</tr>
<tr>
<td>IX</td>
<td>Competition for Structural Components of Heterochromatin</td>
<td>618</td>
</tr>
<tr>
<td>X</td>
<td>Chromatin Structure, Determination, and Somatic Memory</td>
<td>620</td>
</tr>
<tr>
<td>XI</td>
<td>The Effect of Su(var) Mutations on the Expression of Genes Located in Heterochromatin</td>
<td>623</td>
</tr>
<tr>
<td>XII</td>
<td>Summary</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td><strong>INDEX</strong></td>
<td>629</td>
</tr>
<tr>
<td></td>
<td><strong>CONTENTS OF RECENT VOLUMES</strong></td>
<td>663</td>
</tr>
</tbody>
</table>