Advances in CANCER RESEARCH

Volume 72

Edited by

George F. Vande Woude

ABL–Basic Research Program National Cancer Institute Frederick Cancer Research and Development Center Frederick, Maryland

George Klein

Microbiology and Tumor Biology Center Karolinska Institutet Stockholm, Sweden

ACADEMIC PRESS

San Diego London Boston New York Sydney Tokyo Toronto

Contents

Contributors to Volume 72 ix

FOUNDATIONS IN CANCER RESEARCH

Foulds' Dangerous Idea Revisited: The Multistep Development of Tumors 40 Years Later George Klein

- I. Foulds' Rules 2
 - II. Oncogenetics 3
- III. Other Destabilizing Mutations Caused by Loss of DNA Repair Functions 11
- IV. Molecular Biology of Multistep Carcinogenesis 14
- V. Strong Selective Pressures Favor Multiple Escapes 17
- VI. Conclusion 19 References 20

FOUNDATIONS IN CANCER RESEARCH

Cancer Cells Exhibit a Mutator Phenotype

Lawrence A. Loeb

- I. Introduction 26
- II. Historical Perspective 28
- III. Requirements for a Mutator Phenotype 32
- IV. Origins of Mutations 36
- V. Candidate Target Mutator Genes 38
- VI. Microsatellite Instability 43
- VII. Theoretical and Practical Considerations 47
- VIII. Summary and Perspectives 51 References 52

Increasing Complexity of Ras Signal Transduction: Involvement of Rho Family Proteins

Roya Khosravi-Far, Sharon Campbell, Kent L. Rossman, and Channing J. Der

- I. Introduction 57
- II. Ras Is a Point of Convergence for Diverse Extracellular Signal-Stimulated Pathways 60
- III. Ras Activation of Raf-Independent Pathways Contributes to Ras Transformation 65
- IV. Ras Mediates Its Actions through Interaction with Multiple Effectors 69
- V. Ras Activation of a GTPase Cascade: An Involvement of Rho Family Proteins in Transformation 78
- VI. Rho Family Proteins Mediate Their Actions through Interaction with Multiple Effectors 85
- VII. A Search for the Missing Link between Ras and Rho Family Proteins 9.
- VIII. Increasing Complexity of Ras Signal Transduction: A Boon or Bust for Drug Discovery and the Development of Anti-Ras Drugs for Cancer Treatment? 9
 - IX. Future Directions 97 References 99

B-Myb: A Key Regulator of the Cell Cycle

Mark K. Saville and Roger J. Watson

- I. Introduction 109
- II. B-Myb Structure and Functional Domains 111
- III. Transcriptional Regulation of B-myb 115
- IV. Modification of B-Myb Protein in the Cell Cycle 123
- V. The Requirement for B-Myb in Cell Proliferation 127
- VI. B-Myb Function 132 References 137

Alterations in DNA Methylation: A Fundamental Aspect of Neoplasia

Stephen B. Baylin, James G. Herman, Jeremy R. Graff, Paula M. Vertino, and Jean-Pierre Issa

- I. Introduction 142
- II. Brief History of DNA Methylation in Eukaryotes 142
- III. The Normal Roles for Cytosine Methylation in Higher Order Eukaryotes 144
- IV. Abnormalities of DNA Methylation in Neoplasia 150
- V. Mechanisms Underlying the DNA Methylation Changes in Neoplastic Cells 167
- VI. An Overview of Tumor Progression That Incorporates the Roles of Altered DNA Methylation 186
- VII. Clinical Implications of Altered DNA Methylation in Cancer 189 References 190

Ara-C: Cellular and Molecular Pharmacology

Steven Grant

•	- 1		400
I.	Introd	uction	198
1.	muou	uction	1/0

- II. Structure 200
- III. Metabolism 200
- IV. Mechanisms of Cytotoxicity 205
- V. Mechanism of Resistance 210
- VI. Signaling Pathways and Oncogene Interactions 213
- VII. Modulation of ara-C Associated Toxicity 220
- VIII. Conclusions 225

References 225

Index 235