ADVANCES IN Immunology ## EDITED BY FRANK J. DIXON The Scripps Research Institute La Jolla, California ASSOCIATE EDITORS Frederick Alt K. Frank Austen Tadamitsu Kishimoto Fritz Melchers Jonathan W. Uhr Emil R. Unanue **VOLUME 76** A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Sydney Tokyo ## CONTENTS ix Contributors | MIC Genes: From Genetics to Biology | | |--|--------------------------------------| | Seiamak Bahram | | | I. Introduction II. Genes and Genomics III. Transcripts and Transcription IV. Biochemistry and Biology V. Genetics and Immunogenetics VI. Conclusion References | 1
5
13
20
30
46
47 | | CD40-Mediated Regulation of Immune Responses by TRAF-Dependent and TRAF-Independent Signaling Mechanisms | | | Amrie C. Grammer and Peter E. Lipsky | | | I. Introduction II. Discovery of CD40 and CD154 III. Functional Outcomes of CD154-CD40 Signaling IV. Regulation of CD40 and CD154 Expression V. Role of CD40-Induced Signaling Cascades in Functional Responses of B Cells VI. Conclusion References | 61
70
78
86
145
146 | | Cell Death Control in Lymphocytes | | | Kim Newton and Andreas Strasser | | | I. Introduction II. Apoptosis and the Role of Caspases | 179
179 | | III. Apoptosis Signaling by Death Receptors IV. Apoptosis Signaling through Apaf-1 and Caspase 9 V. Apoptosis and Its Regulation by Members of the Bcl-2 Family VI. Transcriptional and Posttranslational Control of Bcl-2 Family Members VII. Apoptosis and the Immune System VIII. T Cell Development—Apoptosis at the Pre-TCR Checkpoint IX. Positive and Negative Selection at the Pre-T Stage of Development X. T Cell Apoptosis in Peripheral Lymphoid Organs XI. The TNF-R Family and T Cell Proliferation XII. B Cell Development—Apoptosis at the Pre-BCR Checkpoint XIII. Selection of Immature B Cells in the Bone Marrow XIV. B Cell Apoptosis in Peripheral Lymphoid Organs XV. Conclusion References | 180
184
186
188
189
190
193
195
200
202
203
205
206 | |---|---| | Systemic Lupus Erythematosus, Complement Deficiency, and Apoptosis | **.
* | | $M.\ C.\ Pickering,\ M.\ Botto,\ P.\ R.\ Taylor,\ P.\ J.\ Lachmann,\ and\ M.\ J.\ Walpo$ | ORT | | I. Introduction | 227 | | II. Description of the Associations between Complement and SLE in Humans III. Animal Models of Complement Deficiency IV. Complement and Inflammation in SLE V. Lupus Causes Autoantibody Production to C1q VI. Hypotheses for the Association between Complement Deficiency | 228
277
279
281 | | and SLE VII. What Lessons Can Be Learned from Other Murine Models | 283 | | of Autoimmunity? VIII. Conclusions References | 297
298
299 | | Signal Transduction by the High-Affinity Immunoglobulin E Receptor FcɛRI: Coupling Form to Function | | | Monica J. S. Nadler, Sharon A. Matthews, Helen Turner, and Jean-Pierre Kinet | | | I. Introduction II. Signal Initiation: The Central Importance of ITAM III. Phosphate Transfer and PTKs IV. Phosphate Transfer and PTPs V. Other Signaling Molecules VI. Integration of Lipid-Protein Interactions and Calcium Flux VII. From Lipid Signaling to Protein Serine-Threonine Protein Kinases | 325
327
328
332
335
338
339 | | CONTENTS | vii | |----------------------------|-----| | VIII. Lipid Rafts | 343 | | IX. Conclusion | 344 | | References | 345 | | INDEX | 357 | | Contents of Recent Volumes | 367 |