ADVANCES IN Immunology ## EDITED BY FRANK J. DIXON The Scripps Research Institute La Jolla, California ASSOCIATE EDITORS Frederick Alt K. Frank Austen Tadamitsu Kishimoto Fritz Melchers Jonathan W. Uhr **VOLUME 73** ## **ACADEMIC PRESS** San Diego London Boston New York Sydney Tokyo Toronto ## CONTENTS ix CONTRIBUTORS | Mechanisms of Exogenous Antigen Presentation by MHC Class I Molecules <i>in Vitro</i> and <i>in Vivo:</i> Implications for Generating CD8 ⁺ T Cell Responses to Infectious Agents, Tumors, Transplants, and Vaccines | | |--|---| | JONATHAN W. YEWDELL, CHRISTOPHER C. NORBURY, AND JACK R. BENNINK | | | I. Introduction II. Supporting Information III. Processing and Presentation of Exogenous Antigens: Reviewing the Recent Literature IV. Conclusion: Basic Questions References | 1
4
26
63
64 | | Signal Transduction Pathways That Regulate the Fate of B Lymphocytes Andrew Craxton, Kevin Otipoby, Aimin Jiang, and Edward A. Clark | | | I. Introduction II. B Cell Antigen Receptor Complex III. Coreceptor Regulation of BCR Signaling IV. Regulation of BCR-Induced Responses by CD40 V. CD95/Fas-Mediated Signaling and BCR-Mediated Resistance to CD95/Fas-Induced Death VI. General Comments and Concluding Remarks References | 79
89
106
122
132
134
135 | | Oral Tolerance: Mechanisms and Therapeutic Applications Ana Faria and Howard L. Weiner | | | I. Introduction II. Mechanisms of Oral Tolerance III. Immune Functions Affected by Oral Tolerance IV. Factors Affecting Oral Tolerance Induction and Maintenance | 153
158
174
178 | vi CONTENTS | VI. No
VII. On
VIII. To
IX. To
X. Fo | asal Tolerance ther Forms of Antigen-Driven Tolerance reatment of Autoimmune and Inflammatory Diseases in Animals reatment of Autoimmune Diseases in Humans uture Directions | 201
203
206
208
225
232
232 | |--|---|--| | Caspases | s and Cytokines: Roles in Inflammation and Autoimmunity | | | Јони С. Р | REED | | | II. Th
III. Ca
IV. Ca | he Caspase Family
Paspases and Cytokines
Ponclusions | 265
265
267
287
287 | | T Cell Dy | vnamics in HIV-1 Infection | | | • | Clark, Rob J. de Boer, Katja C. Wolthers, and Frank Miedema | | | II. N
III. T
IV. G
V. M
VI. W
VII. A _J | formal T Cell Renewal from Progenitors Cell Renewal from Progenitors in HIV-1 Infection Cetting Quantitative on CD4 ⁺ T Cell Production Measuring Cell Division with the Ki67 mAb What Is the Cause of CD4 ⁺ T Cell Depletion in HIV-1 Infection? Peppendix: Summarizing in Terms of a Mathematical Model | 301
303
305
309
316
320
323
324 | | Bacterial | CpG DNA Activates Immune Cells to Signal Infectious Danger | | | | n Wagner | | | I. In | | 329 | | III. Bi
IV. Se
V. C
VI. C
VII. C
VIII. C
IX. C | Unraveling Immunobiology Sinding and Cellular Uptake of ODNs equence-Independent Effects of the Backbone EpG DNA Sequence-Specific Effects on B Cells EpG DNA Sequence-Specific Effects on APCs EpG DNA Effects on T Cells EpG[S]ODN Effects on NK Cells EpG Motifs Affect Plasmid DNA Biology in Gene Vaccination | 331
333
334
336
338
339
340 | | XI. Ir | equence-Specific Effects of Poly(G) Motifs mmunosuppressive CpG DNA Motifs cpG-ODN-Mediated Signaling | 341
342
342 | | CONTENTS | vii | |----------|-----| |----------|-----| | XIII. Sensing of Pathogen DNA: Evolutionary Vestige of Foreign I XIV. CpG DNA Acts as Adjuvant for Th1 Responses XV. CpG DNA Mediates Harmful Effects in Vivo XVI. CpG DNA Acts as Adjuvant for Antitumor Responses XVII. CpG DNA Reverts Th2-Oriented Pathology XVIII. CpG DNA Acts as Adjuvant for Mucosal Immunity XIX. CpG DNA Causes Extramedullary Hematopoiesis XX. CpG DNA Activates Human Immune Cells XXI. CpG DNA Mediates Signaling: Stimulation versus Costimulat XXII. CpG DNA Allows MHC Class I-Restricted CTL Responses t Exogeneous Antigens XXIII. Concluding Remarks References | 348
349
349
350
351
351
352
tion 352 | |---|---| | Neutrophil-Derived Proteins: Selling Cytokines by the Pound | | | Marco Antonio Cassatella | | | I. Introduction II. General Features of Cytokine Production by Neutrophils III. Production of Specific Cytokines by Neutrophils in Vitro IV. Production of Cytokines by Neutrophils Isolated from Individent Affected by Different Pathologies V. Modulation of Cytokine Production in Human Neutrophils VI. Molecular Regulation of Cytokine Production in Neutrophils VII. Cytokine Production by Neutrophils in Vivo VIII. Concluding Remarks References | 369
369
373
duals
426
440
447
453
476
479 | | Murine Models of Thymic Lymphomas: Premalignant Scenarios Amer | nable to | | EITAN YEFENOF | | | I. Introduction II. Immunobiology of the Thymus in Relation to Lymphomagent III. Thymic Lymphomas of AKR Mice IV. Prelymphoma Cells in AKR Mice V. Carcinogen-Induced Lymphomas VI. Thymic Lymphomas Induced by Fractionated Irradiation VII. RadLV-Induced Lymphomagenesis VIII. Preventive Therapy of Prelymphoma Mice IX. Concluding Remarks References | esis 511
513
514
515
516
518
520
525
530
531 | | Index
Contents of Recent Volumes | 541
557 |