ADVANCES IN Immunology ### EDITED BY # FRANK J.; DIXON The Scripps Research Institute La Jolla, California # ASSOCIATE EDITORS Frederick Alt K. Frank Austen Tadamitsu Kishimoto Fritz Melchers Jonathan W. Uhr **VOLUME 71** # **ACADEMIC PRESS** San Diego London Boston New York Sydney Tokyo Toronto ## **CONTENTS** **CONTRIBUTORS** ix | , , | ineage Commitment in the Thymus of Normal and Genetically lated Mice | | | |--|---|---|--| | Hans Jo | örg Fehling, Susan Gilfillan, and Rhodri Ceredig | | | | II.
III.
IV.
V.
VI. | Introduction Models of $\alpha\beta/\gamma\delta$ Lineage Commitment and Lineage Maintenance Analysis of TCR Gene Rearrangements in $\alpha\beta$ and $\gamma\delta$ Lineage Cells Analysis of TCR Transgenic and Gene-Targeted Mice Cell Culture Studies Developmental Considerations In Search of a Consensus Model for the $\alpha\beta/\gamma\delta$ Lineage Split References | 1
16
19
35
52
53
54
64 | | | Immun | oregulatory Functions of $\gamma\delta$ T Cells | | | | Willi Born, Carol Cady, Jessica Jones-Carson, Akiko Mukasa,
Michael Lahn, and Rebecca O'Brien | | | | | II.
III.
IV. | Introduction Origin, Lineage and Development, and Distribution Specificity Functions Concluding Remarks References | 77
78
83
93
123
124 | | | | as Mediators of Cytokine-Induced Responses | | | | II. | Introduction The STAT Gene Family Structural and Functional Domains in STAT Proteins | 145
145
146 | | vi CONTENTS | V.
VI. | STAT-Deficient Mice
STAT Function in Cellular Proliferation and Disease
Regulation of STAT Function
Summary and Perspective
References | 152
155
156
157
158 | |--|--|---| | · | APO-1/Fas)-Mediated Apoptosis: Live and Let Die | | | PETER | H. Krammer | | | II. III. IV. V. VII. VIII. IX. X. XII. XII | Introduction Death Receptors and Ligands The CD95/CD95L System Gene Defects in the CD95/CD95L System Role of the CD95/CD95L System in Deletion of Peripheral T Cells Role of the CD95/CD95L System in Liver Homeostasis Signal Transduction of CD95-Mediated Apoptosis The Death Domain CD95 Associated Signaling Molecules Other Signaling Molecules Invoked in CD95 Signaling Proteins of the Bcl-2 Family The Death-Inducing Signaling Complex (DISC) Downstream Caspases in CD95 Death Receptor Signaling Type I and Type II Cells FLIPs (FLICE Inhibitory Proteins) Sensitivity and Resistance of T Lymphocytes toward CD95-Mediated Apoptosis The CD95 System and Chemotherapy The CD95 Death System in AIDS Further Considerations on the Role of Apoptosis in the Clinic | 163
164
166
167
168
169
170
172
174
176
180
181
182
184
188 | | | References | 192 | | | Chemokine SDF-1/PBSF: A Ligand for a HIV Coreceptor, CXCR4 HI NAGASAWA, KAZUNOBU TACHIBANA, AND KENJI KAWABATA | | | | Introduction | 211 | | II. | Identification, Structure, and Expression of CXC Chemokine | 010 | | TTT | SDF-1/PBSF Physiological Functions of SDF 1/PBSF | $\frac{212}{215}$ | | | Physiological Functions of SDF-1/PBSF
A SDF-1/PBSF Receptor, CXCR4 | 215 | | V. | HIV-1 Infection and CXCR4 | 219 | | | Perspectives | 222 | | | References | 222 | NTENTS vii | | Mechanisms | | |---|--|--| | BRIGIT | ta Stockinger | | | II. | Introduction
Central Tolerance Induction in the Thymus
Peripheral Tolerance
References | 229
229
240
251 | | Confro | ntation between Intracellular Bacteria and the Immune System | | | ULRICH | H E. Schaible, Helen L. Collins, and Stefan H. E. Kaufmann | | | II.
III.
IV.
V.
VII.
VIII. | Introduction What Is an Intracellular Pathogen? How to Enter the Host Cell Is How to Survive Induction of Nonspecific Immunity Phagosome Maturation and Microbial Detours Antigen Processing and Presentation Pathways T-Cell Subsets and Effector Mechanisms Host Genetics Influencing the Outcome of Infection Immune Intervention Strategies References | 267
268
269
273
283
292
307
322
326
336 | | Index
Conte | nts of Recent Volumes | 379
385 |