ADVANCES IN Immunology ## EDITED BY FRANK J. DIXON The Scripps Research Institute La Jolla, California ASSOCIATE EDITORS Frederick Alt K. Frank Austen Tadamitsu Kishimoto Fritz Melchers Jonathan W. Uhr **VOLUME 65** ## **ACADEMIC PRESS** San Diego London Boston New York Sydney Tokyo Toronto ## CONTENTS ix Contributors | NF-IL6 and NF-κB in Cytokine Gene Regulation | | |---|--| | Shizuo Akira and Tadamitsu Kishimoto | .* | | I. Introduction II. NF-IL6 III. NF-κΒ IV. Protein—Protein Interaction in Gene Regulation V. Cytokine Gene Regulation VI. Cytokine Induction in NF-IL6 Family Knockout Mice VII. Cytokine Induction in NF-κB Knockout Mice VIII. Conclusion References | 1
11
16
25
29
30
32
33 | | Transporter Associated with Antigen Processing | | | TIM ELLIOTT | | | I. Introduction II. ABC Transporters III. Gene Structure of TAP and Its Regulation IV. TAP Protein Structure V. TAP Polymorphism VI. Function of the TAP Complex VII. TAP and MHC Class I Assembly VIII. TAP in Disease IX. Concluding Remarks References | 47
56
58
61
71
75
87
92
96 | vi CONTENTS | NF-κB as a Freq | uent Target for | Immunosuppressive a | and | |------------------|-----------------|---------------------|-----| | Anti-Inflammator | y Molecules | | | | PATRICK A. BA | EUERLE AND | VIJAY R. | BAICHWAL | |---------------|------------|----------|----------| |---------------|------------|----------|----------| | II. IV. V. VI. VII. VIII. IX. X. XI. XII. | Introduction Glucocorticoids and Other Steroid Hormones Cyclosporin A and FK506 Rapamycin Salicylates Antioxidants and Inhibitors of Enzymes Generating Reactive Oxygen Intermediates Anti-TNF- α Antibodies and Gold Compounds in Treatment of Rheumatoid Arthritis Immunosuppressive Activity of cAMP The Bacterial Metabolite Spergualin The Fungal Metabolite Gliotoxin Viral Strategies to Control NF- κ B Conclusion References | 111
118
120
121
121
122
123
124
125
126
127
128
132 | |---|---|---| | Mouse
and H | e Mammary Tumor Virus: Immunological Interplays between Virus
lost | | | Sanjiv | VA. LUTHER AND HANS ACHA-ORBEA | | | II.
III.
IV.
V.
VI. | Introduction Mouse Mammary Tumor Virus Structure of the SAg Protein Immune Response to MMTV T and B Cell Response to Endogenous Mtv Comparison with Other SAgs Conclusions References | 139
140
157
167
196
208
211
212 | | lgA D | eficiency | | | Ретен | R D. Burrows and Max D. Cooper | | | II.
III.
IV.
V. | Introduction Clinical Manifestations of IgA Deficiency IgA Structure, Production, and Function IgA Deficiency Viewed in the Context of the Genesis of IgA-Producing Cells Relationship of IgAD with Common Variable Immunodeficiency | 245
246
248
251
256
256 | | VII. | Genetic Susceptibility for IgAD and CVID Pathogenesis of IgA Deficiency | 260 | | VIII. | Conclusions
References | 263
263 | | vii | |-----| | | 407 | CONTENTS | Vli | |--|--| | Role of Cellular Immunity in Protection against HIV Infection | | | Sarah Rowland-Jones, Rusung Tan, and Andrew McMichael | | | I. Introduction II. Cellular Immunity in the Control of Other Viruses III. CTL Effector Mechanisms IV. HLA and HIV Infection V. The Nature of HIV-Specific CTLs VI. Measurement of HIV-Specific CTLs VII. Role of HIV-Specific CTLs in the Natural History of HIV Infection VIII. Does HIV Escape from the CTL Response? IX. Therapeutic Implications of the Importance of HIV-Specific CTLs X. Conclusions References | 277
278
280
284
286
287
290
311
317
322
323 | | High Endothelial Venules: Lymphocyte Traffic Control and Controlled Traffic | | | GEORG KRAAL AND REINA E. MEBIUS | | | I. Introduction II. Structure of High Endothelial Venules III. Role of HEVs and Lymphocyte Migration IV. In Vitro HEV Binding Assay V. Molecules Determining HEV-Lymphocyte Interactions VI. L Selectin VII. Integrins and Their Role in Lymphocyte-HEV Interactions VIII. CD44 and Lymphocyte Homing IX. Homing Receptor Ligands on High Endothelial Cells X. Additional Molecules on High Endothelial Venules Involved in Lymphocyte Migration XI. Adhesion and Extravasation XII. Adhesion Cascade and Specificity of Lymphocyte Homing XIII. Regulation of the Unique Features of the High Endothelial Venule XIV. Concluding Remarks References | 347
348
350
351
352
352
358
359
360
365
365
365
369
372
379
380 | | Index | 397 | CONTENTS OF RECENT VOLUMES