ADVANCES IN PROTEIN CHEMISTRY

EDITED BY

FREDERIC M. RICHARDS

Department of Molecular Biophysics and Biochemistry Yale University New Haven, Connecticut

DAVID S. EISENBERG

Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California

PETER S. KIM

Department of Biology
Massachusetts Institute of Technology
Whitehead Institute for Biomedical Research
Howard Hughes Medical Institute Research Laboratories
Cambridge, Massachusetts

VOLUME 51

Linkage Thermodynamics of Macromolecular Interactions

EDITED BY

ENRICO DI CERA

Department of Biochemistry and Molecular Biophysics Washington University Medical School St. Louis, Missouri

ACADEMIC PRESS

San Diego London Boston New York Sydney Tokyo Toronto

CONTENTS

NTROE	ouction	•		•		ix			
Ele	ectrostatic Contributions to Molecular	Free	e Ene	rgies	in S	olution			
Mic	hael Schaefer, Herman W. T. van V	LIJME	N, AN	d Mai	RTIN F	CARPLUS			
I. II. III. IV.	Introduction		•		•	1 3 20 53			
	References		•	. ,		54			
Site-Specific Analysis of Mutational Effects in Proteins Enrico Di Cera									
I.	Introduction		•			. 59			
n.	The Reference Cycle					. 61			
Ш.	Structural Mapping of Energetics					. 63			
IV. Site-Specific Analysis of Mutational Effects									
***	in Proteins				•	. 73			
V.	Site-Specific Dissection of Thrombia					. 79			
vi.	Concluding Remarks					. 113			
• ••	References	•	•		•	. 115			
	Allosteric Transitions of the Acc								
	Stuart J. Edelstein and Jean	Pieri	re Ch	ANGE	UX				
1.	Introduction .					. 121			
П.	Mechanistic Models					. 127	,		
Ш.	Recovery from Desensitization.					. 133	,		
īV.	Kinetic Basis of Dose–Response Cu					. 137	1		
V.	Multiple Phenotypes					. 141			
γ. 377	Dadustions from Single Channel M					140			

vi CONTENTS

VII.	Allosteric Effectors and Coincidence Detection			163
VIII.	General Considerations			166
	References	•	•	173
	Deciphering the Molecular Code of Hemoglobia	n Allo	stery	
	Gary K. Ackers			
I.	Introduction			185
II.	Overview			190
III.	Binding Curves and Stoichiometric Information			198
IV.	Site-Specific Aspects of Oxygen Binding			206
V.	Experimental Determination of Site-Specific			
	1	_	_	211
VI.	Cooperativity Terms			221
VII.	Concluding Remarks			246
	References			248
	Binding Equilibria			
	Ernesto Freire			
I.	Introduction			255
II.	The Most Probable Distribution		•	257
III.	Coupling of Statistical Weights to Ligands .			257
IV.	Modulation of Distribution of States by			
	Specific Ligands			259
V.	Modulation of Distribution of States			
	by Denaturants			262
VI.	Ligand-Induced Conformational Changes .			263
VII.	The Distribution of Conformational States Acco	rding	to	
	Their Gibbs Energy	•		263
VIII.	Is the Unfolded State the State with the Highest	t		
	Gibbs Energy?	•		267
IX.	The Gibbs Energy Scale of Conformational State	es .		269
X.	Statistical Descriptors of the			
-	Conformational Ensemble	• ,		271
XI.	Conclusions	•	•	278
	References			278

CONTENTS vii

Analysis of Effects of Salts and Uncharged Solutes on Protein and Nucleic Acid Equilibria and Processes: A Practical Guide to Recognizing and Interpreting Polyelectrolyte Effects, Hofmeister Effects, and Osmotic Effects of Salts

M.	THOMAS RECORD, JR., WENTAO ZHANG, AND CHARLES F.	Anderso	N
1	Introduction		282
11.	Overview of Concentration-Dependent Effects		
	of Perturbing Solutes on Processes		
	Involving Biopolymers		286
Ш.	Preferential Interaction Coefficients as Fundamental		
	Measures of Thermodynamic Effects due to		
	Solute-Biopolymer Interactions		295
IV.	Preferential Interactions of Nonelectrolyte Molecules		
	with an Uncharged Biopolymer		303
V.	Preferential Interactions of Electrolyte Ions with a		
	Charged Biopolymer		311
VI.	Use of Three-Component Preferential Interaction		
	Coefficients to Analyze Effects of Solute Concentration		
	on Equilibrium Constants, Transition Temperatures,	or	
	Free Energy Changes of Biopolymer Processes .		319
VII.	Two-Domain Predictions of Functional Forms of Effe	cts	
	of Nonelectrolyte Concentration on Equilibria $(K_{\rm obs})$		
	and Transition Temperatures (T_m) of Uncharged		
	Biopolymers in Aqueous Solution		326
VIII.	Polyelectrolyte and Two-Domain Predictions of		
	Functional Forms of Effects of Salt Concentration on		
	Equilibria (K_{obs}) and Transition Temperatures (T_m)	of	
ww.m	Charged Biopolymers in Aqueous Solution	•	330
IX.	Conclusions and Future Directions	•	349
	References	•	350
	ontrol of Protein Stability and Reactions by Weakly In	torootina	
U	Cosolvents: The Simplicity of the Complicated		
	Cosolvents. The Simplicity of the Complicated		
	Serge N. Timasheff		
I.	Telegraphy at an		050
1. II.	Introduction	•	356
и. Ш.	Preferential Interactions .	• •	360
111.	Wyman Linkages in Preferential Interactions	•	377

viii CONTEN

IV.	Linkage Control of Protein Stability Linkage Control of Protein Reactions										387
V.											409
VI.	Sources of E	xclusi	on					•	•		416
VII.	Osmolytes										423
VIII.	Conclusion										425
	References	•	•	•	•	•	٠	•	•	•	428
AUTHO	OR INDEX .	•						•			433
SURIECT INDEX											453