ADVANCES IN PROTEIN CHEMISTRY

EDITED BY

FREDERIC M. RICHARDS

Department of Molecular Biophysics and Biochemistry Yale University New Haven, Connecticut

DAVID S. EISENBERG

Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California

PETER S. KIM

Department of Biology Massachusetts Institute of Technology Whitehead Institute for Biomedical Research Howard Hughes Medical Institute Research Laboratories Cambridge, Massachusetts

VOLUME 50

Protein Misassembly

EDITED BY

RONALD WETZEL University of Tennessee Medical Center Knoxville, Tennessee

ACADEMIC PRESS San Diego London Boston New York Sydney Tokyo Toronto

CONTENTS

PREFACE	•			•		•		•	•	•	•	$\mathbf{i}\mathbf{x}$
CHRISTIAN I	3. Ani	FINSE	V	•	•	•	•	•	•	•		xiii

Protein Misassembly in Vitro

RAINER JAENICKE AND ROBERT SECKLER

I.	Introduction	•	1
II.	Protein Denaturation and Aggregation		2
III.	Aggregation of Folding Intermediates		23
IV.	Kinetic Partitioning between Folding and Aggregation		28
V.	Protein Misassembly and Molecular Chaperones .		34
VI.	Suppressing Protein Misassembly during Protein		
	Folding in Vitro		41
VII.	Concluding Remarks		52
	References		53

Oligomer Formation by 3D Domain Swapping: A Model for Protein Assembly and Misassembly

MICHAEL P. SCHLUNEGGER, MELANIE J. BENNETT, AND DAVID EISENBERG

I.	Introduction	•		61
II.	Definitions of 3D Domain Swapping	•		63
III.	Examples of 3D Domain Swapping			65
IV.	Energetics of 3D Domain Swapping			94
V.	Roles of Amino Acid Sequence and Three-Dimen	sion	al	
	Structure in 3D Domain Swapping	•	•	98
VI.	Effects of Protein Environment on 3D			
	Domain Swapping	•		103
VII.	Protein Aggregation and 3D Domain Swapping: C	Can	an -	
	Evolved Interface Lead to Pathological Function?	•	•	106
	References		•	115

CONTENTS

The Structure of Amyloid Fibrils by Electron Microscopy and X-Ray Diffraction

MARGARET SUNDE AND COLIN BLAKE

I.	Introduction to the Structural Characterization			
	of Amyloid			123
II.	The Structural Hierarchy: Fibrils, Protofilaments,	and		
	Subprotofilaments			127
III.	The Development of the Cross- β -Model for			
	Amyloid Structure	•		129
IV.	X-Ray Diffraction Studies of Amyloid Fibrils .			131
V.	A Common Core Structure for Amyloid Fibrils			140
VI.	X-Ray Studies of Amyloidogenic Proteins			144
VII.	Biological Implications of the Structural Studies			153
	References			155
				1 .
	Transthyretin Quaternary and Tertiary Structural	Cha	naes	
	Facilitate Misassembly into Amyloid	ona	ngeo	
IEF	FERY W. KELLY, WILFREDO COLON, ZHIHONG LAI, HILA	LA.	LASHU	JEL,
JE	NNIFER MCCULLOCH, SANDRA L. McCUTCHEN, GRETA	[. M1	roy, a	ND
5	SCOTT A. PETERSON			
т	Restance and Introduction			161
1. 11	Understanding the Mechanism of Transformation	•	•	101
	Amyloid Fibril Formation in Vitro under Simulate	1		
	Lysosomal Conditions	1		
τπ	Lysosonial Conditions		•	167
				167
	FAP Mutations Function to Cause Farly Onset	.C		167
	FAP Mutations Function to Cause Early Onset	C		167
w	FAP Mutations Function to Cause Early Onset Amyloid Disease			167 175
IV.	FAP Mutations Function to Cause Early Onset Amyloid Disease Therapeutic Strategies for Intervention in TTR Amyloid Disease			167 175 178
IV.	FAP Mutations Function to Cause Early Onset Amyloid Disease Therapeutic Strategies for Intervention in TTR Amyloid Disease	•		167 175 178 178
IV. V.	FAP Mutations Function to Cause Early Onset Amyloid Disease			167 175 178 178 178

Domain Stability in Immunoglobulin Light Chain Deposition Disorders

RONALD WETZEL

I.	Introduction	•		•		•		•	•	183
II.	Possible Factor	rs in	Prote	in De	positio	a in	Vivo.	•		184

CONTENTS

III.	The Structural Basis of V_L Domain Folding										
	Stability .			•		•	•	•			193
IV.	Light Chain A	Amylo	idosis	s.	•	•	•	•	•		205
V.	Other Light (Chain	Aggr	egatio	on Di	sorde	ers				223
VI.	Bacterial Incl	usion	Body	Forr	natio	n of I	Light	Chair	n		
	V_L Domains	•	•	•					•		230
VII.	Conclusion			•					•		235
	References			•				•	•	•	236

Mutational Effects on Inclusion Body Formation

SCOTT BETTS, CAMERON HAASE-PETTINGELL, AND JONATHAN KING

I.	Introduct	tion		•		•	•			•		243
II.	Propertie	s of	Inclu	ision	Bodi	es.	•			•		244
III.	Protein M	lisfo	lding	g and	Disea	ase	•			•		247
IV.	7. Product Loss in Industry, Protein Loss in											
	Biomedia	al R	esear	·ch	•		•					247
V.	Sequence	e Effe	ects o	on Pr	otein	Agg	regati	on in	ı Vitro			248
VI.	Inclusion	Boo	ly Pr	ecurs	ors ai	nd Pa	athwa	ys: M	isasse	mbly		
	and Aggr	egat	ion i	n Viv	ο.		•	•		•		249
VII.	Mutation	s Th	at Af	fect I	Inclus	ion 1	Body	Form	ation			250
VIII.	Aggregat	ion v	versu	s Olig	gome	rizati	on					259
IX.	Inclusion Body Formation, Chaperonin Function, and											
	Novel Th	erap	ies			•						260
	Referenc	es	•		•		•					261
AUTHC	R INDEX	•		•								265
SUBJEC	T INDEX			•								275