Learning with Kernels
Support Vector Machines, Regularization, Optimization, and Beyond

Bernhard Schölkopf
Alexander J. Smola

The MIT Press
Cambridge, Massachusetts
London, England
Contents

Series Foreword

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
</tr>
</tbody>
</table>

A Tutorial Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Data Representation and Similarity.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>A Simple Pattern Recognition Algorithm.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Some Insights From Statistical Learning Theory.</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Hyperplane Classifiers.</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Support Vector Classification.</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Support Vector Regression.</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Kernel Principal Component Analysis.</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>Empirical Results and Implementations.</td>
<td>21</td>
</tr>
</tbody>
</table>

Concepts and Tools

Kernels

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Product Features.</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>The Representation of Similarities in Linear Spaces.</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples and Properties of Kernels.</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>The Representation of Dissimilarities in Linear Spaces.</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary.</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Problems.</td>
<td>55</td>
</tr>
</tbody>
</table>

Risk and Loss Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Loss Functions.</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Test Error and Expected Risk.</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>A Statistical Perspective.</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Robust Estimators.</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary.</td>
<td>83</td>
</tr>
<tr>
<td>3.6</td>
<td>Problems.</td>
<td>84</td>
</tr>
</tbody>
</table>

Regularization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Regularized Risk Functional</td>
<td>87</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.2</td>
<td>The Representer Theorem</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Regularization Operators</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Translation Invariant Kernels</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Translation Invariant Kernels in Higher Dimensions</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Dot Product Kernels</td>
<td>110</td>
</tr>
<tr>
<td>4.7</td>
<td>Multi-Output Regularization</td>
<td>113</td>
</tr>
<tr>
<td>4.8</td>
<td>Semiparametric Regularization</td>
<td>115</td>
</tr>
<tr>
<td>4.9</td>
<td>Coefficient Based Regularization</td>
<td>118</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary</td>
<td>121</td>
</tr>
<tr>
<td>4.11</td>
<td>Problems</td>
<td>122</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>5.2</td>
<td>The Law of Large Numbers</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>When Does Learning Work: the Question of Consistency</td>
<td>131</td>
</tr>
<tr>
<td>5.4</td>
<td>Uniform Convergence and Consistency</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>How to Derive a VC Bound</td>
<td>134</td>
</tr>
<tr>
<td>5.6</td>
<td>A Model Selection Example</td>
<td>144</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>5.8</td>
<td>Problems</td>
<td>146</td>
</tr>
<tr>
<td>6.1</td>
<td>Convex Optimization</td>
<td>150</td>
</tr>
<tr>
<td>6.2</td>
<td>Unconstrained Problems</td>
<td>154</td>
</tr>
<tr>
<td>6.3</td>
<td>Constrained Problems</td>
<td>165</td>
</tr>
<tr>
<td>6.4</td>
<td>Interior Point Methods</td>
<td>175</td>
</tr>
<tr>
<td>6.5</td>
<td>Maximum Search Problems</td>
<td>179</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary</td>
<td>183</td>
</tr>
<tr>
<td>6.7</td>
<td>Problems</td>
<td>184</td>
</tr>
<tr>
<td>7.1</td>
<td>Separating Hyperplanes</td>
<td>189</td>
</tr>
<tr>
<td>7.2</td>
<td>The Role of the Margin</td>
<td>192</td>
</tr>
<tr>
<td>7.3</td>
<td>Optimal Margin Hyperplanes</td>
<td>196</td>
</tr>
<tr>
<td>7.4</td>
<td>Nonlinear Support Vector Classifiers</td>
<td>200</td>
</tr>
<tr>
<td>7.5</td>
<td>Soft Margin Hyperplanes</td>
<td>204</td>
</tr>
<tr>
<td>7.6</td>
<td>Multi-Class Classification</td>
<td>211</td>
</tr>
<tr>
<td>7.7</td>
<td>Variations on a Theme</td>
<td>214</td>
</tr>
<tr>
<td>7.8</td>
<td>Experiments</td>
<td>215</td>
</tr>
<tr>
<td>7.9</td>
<td>Summary</td>
<td>222</td>
</tr>
<tr>
<td>7.10</td>
<td>Problems</td>
<td>222</td>
</tr>
</tbody>
</table>
Contents

8 Single-Class Problems: Quantile Estimation and Novelty Detection 227
 8.1 Introduction ... 228
 8.2 A Distribution's Support and Quantiles 229
 8.3 Algorithms .. 230
 8.4 Optimization .. 234
 8.5 Theory .. 236
 8.6 Discussion .. 241
 8.7 Experiments ... 243
 8.8 Summary .. 247
 8.9 Problems ... 248

9 Regression Estimation 251
 9.1 Linear Regression with Insensitive Loss Function 251
 9.2 Dual Problems ... 254
 9.3 I/-SV Regression 260
 9.4 Convex Combinations and L1-Norms 266
 9.5 Parametric Insensitivity Models 269
 9.6 Applications ... 272
 9.7 Summary ... 273
 9.8 Problems ... 274

10 Implementation 279
 10.1 Tricks of the Trade 281
 10.2 Sparse Greedy Matrix Approximation 288
 10.3 Interior Point Algorithms 295
 10.4 Subset Selection Methods 300
 10.5 Sequential Minimal Optimization 305
 10.6 Iterative Methods 312
 10.7 Summary ... 327
 10.8 Problems ... 329

11 Incorporating Invariances 333
 11.1 Prior Knowledge .. 333
 11.2 Transformation Invariance 335
 11.3 The Virtual SV Method 337
 11.4 Constructing Invariance Kernels 343
 11.5 The Jittered SV Method 354
 11.6 Summary ... 356
 11.7 Problems ... 357

12 Learning Theory Revisited 359
 12.1 Concentration of Measure Inequalities 360
 12.2 Leave-One-Out Estimates 366
 12.3 PAC-Bayesian Bounds 381
 12.4 Operator-Theoretic Methods in Learning Theory 391
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2 A Regularized Quantization Functional</td>
<td>522</td>
</tr>
<tr>
<td>17.3 An Algorithm for Minimizing $R_{\text{reg}}[.]$</td>
<td>526</td>
</tr>
<tr>
<td>17.4 Connections to Other Algorithms</td>
<td>529</td>
</tr>
<tr>
<td>17.5 Uniform Convergence Bounds</td>
<td>533</td>
</tr>
<tr>
<td>17.6 Experiments</td>
<td>537</td>
</tr>
<tr>
<td>17.7 Summary</td>
<td>539</td>
</tr>
<tr>
<td>17.8 Problems</td>
<td>540</td>
</tr>
<tr>
<td>18 Pre-Images and Reduced Set Methods</td>
<td>543</td>
</tr>
<tr>
<td>18.1 The Pre-Image Problem</td>
<td>544</td>
</tr>
<tr>
<td>18.2 Finding Approximate Pre-Images</td>
<td>547</td>
</tr>
<tr>
<td>18.3 Reduced Set Methods</td>
<td>552</td>
</tr>
<tr>
<td>18.4 Reduced Set Selection Methods</td>
<td>554</td>
</tr>
<tr>
<td>18.5 Reduced Set Construction Methods</td>
<td>561</td>
</tr>
<tr>
<td>18.6 Sequential Evaluation of Reduced Set Expansions</td>
<td>564</td>
</tr>
<tr>
<td>18.7 Summary</td>
<td>566</td>
</tr>
<tr>
<td>18.8 Problems</td>
<td>567</td>
</tr>
<tr>
<td>A Addenda</td>
<td>569</td>
</tr>
<tr>
<td>A.I Data Sets</td>
<td>569</td>
</tr>
<tr>
<td>A.2 Proofs</td>
<td>572</td>
</tr>
<tr>
<td>B Mathematical Prerequisites</td>
<td>575</td>
</tr>
<tr>
<td>B.I Probability</td>
<td>575</td>
</tr>
<tr>
<td>B.2 Linear Algebra</td>
<td>580</td>
</tr>
<tr>
<td>B.3 Functional Analysis</td>
<td>586</td>
</tr>
<tr>
<td>References</td>
<td>591</td>
</tr>
<tr>
<td>Index</td>
<td>617</td>
</tr>
<tr>
<td>Notation and Symbols</td>
<td>625</td>
</tr>
</tbody>
</table>