Contents

Preface

Acknowledgme Special Section Map of the Ma	ns .	Xiii XXi XXX
PART 1	THE FACTS OF LIFE	
Chapter 1:	Why: Biology by the Numbers	3
Chapter 2:	What and Where: Construction Plans for Cells and Organisms	3.5
Chapter 3:	When: Stopwatches at Many Scales	87
Chapter 4:	Who: "Bless the Little Beasties"	137
PART 2	LIFE AT REST	
Chapter 5:	Mechanical and Chemical Equilibrium in the Living Cell	187
Chapter 6:	Entropy Rules!	237
Chapter 7:	Two-State Systems: From Ion Channels to Cooperative Binding	283
Chapter 8:	Random Walks and the Structure of Macromolecules	31
Chapter 9:	Electrostatics for Salty Solutions	355
Chapter 10:	Beam Theory: Architecture for Cells and Skeletons	383
Chapter 11:	Biological Membranes: Life in Two Dimensions	427
PART 3	LIFE IN MOTION	
Chapter 12:	The Mathematics of Water	483
Chapter 13:	A Statistical View of Biological Dynamics	509
Chapter 14:	Life in Crowded and Disordered Environments	543
Chapter 15:	Rate Equations and Dynamics in the Cell	573
Chapter 16:	Dynamics of Molecular Motors	623
Chapter 17:	Biological Electricity and the Hodgkin–Huxley Model	683
Chapter 18:	Light and Life	717

vii

PART 4	THE MEANING OF LIFE	
Chapter 19:	Organization of Biological Networks	801
Chapter 20:	Biological Patterns: Order in Space and Time	893
Chapter 21:	Sequences, Specificity, and Evolution	951
Chapter 22:	Whither Physical Biology?	1023
Index		1039

Contents in Detail

Preface		vii	2.2	CELLS AND STRUCTURES WITHIN THEM			
Ackno	wledgments	xiii	2.2.1	2.1 Cells: A Rogue's Gallery Cells Come in a Wide Variety of Shapes and Sizes and with a Huge Range of Functions			
Specia	l Sections	xxix					
Map of	f the Maps	xxx		Cells from Humans Have a Huge Diversity of			
., .,			222	Structure and Function	57		
			2.2.2 2.2.3	The Cellular Interior: Organelles Macromolecular Assemblies: The Whole is Greater	59		
PAR	RT 1 THE FACTS OF LIFE	1		than the Sum of the Parts Macromolecules Come Together to Form	63		
Chap	ter 1 Why: Biology by the Numbers	3		Assemblies	63		
1.1	BIOLOGICAL CARTOGRAPHY	3		Helical Motifs Are Seen Repeatedly in Molecular Assemblies	64		
1.2	PHYSICAL BIOLOGY OF THE CELL	4		Macromolecular Assemblies Are Arranged in	٠.		
	Model Building Requires a Substrate of Biological			Superstructures	65		
	Facts and Physical (or Chemical) Principles	5	2.2.4	Viruses as Assemblies	66		
1.3	THE STUFF OF LIFE	5	2.2.5	The Molecular Architecture of Cells: From Protein Data Bank (PDB) Files to Ribbon Diagrams	69		
1.5	Organisms Are Constructed from Four Great Classes	3		Macromolecular Structure Is Characterized	03		
	of Macromolecules	6		Fundamentally by Atomic Coordinates	69		
	Nucleic Acids and Proteins Are Polymer Languages			Chemical Groups Allow Us to Classify Parts of the			
	with Different Alphabets	7		Structure of Macromolecules	70		
1.4	MODEL BUILDING IN BIOLOGY	9	2.3	TELESCOPING UP IN SCALE: CELLS DON'T GO IT			
1.4.1	Models as Idealizations	9		ALONE	72		
	Biological Stuff Can Be Idealized Using Many		2.3.1	Multicellularity as One of Evolution's Great Inventions			
1.4.2	Different Physical Models Cartoons and Models	11 16		Bacteria Interact to Form Colonies such as Biofilms Teaming Up in a Crisis: Lifestyle of <i>Dictyostelium</i>	73		
1.4.2	Biological Cartoons Select Those Features of the	10		discoideum	75		
	Problem Thought to Be Essential	16		Multicellular Organisms Have Many Distinct			
	Quantitative Models Can Be Built by			Communities of Cells	76		
	Mathematicizing the Cartoons	19	2.3.2	Cellular Structures from Tissues to Nerve Networks	77		
1.5	QUANTITATIVE MODELS AND THE POWER	20		One Class of Multicellular Structures is the Epithelial			
1.5.1	OF IDEALIZATION On the Springiness of Stuff	20 21		Sheets Tissues Are Collections of Cells and Extracellular	77		
1.5.2	The Toolbox of Fundamental Physical Models	22		Matrix	77		
1.5.3	The Unifying Ideas of Biology	23		Nerve Cells Form Complex, Multicellular			
1.5.4	Mathematical Toolkit	25		Complexes	78		
1.5.5 1.5.6	The Role of Estimates On Being Wrong	26 29	2.3.3	Multicellular Organisms	78		
1.5.7	Rules of Thumb: Biology by the Numbers	30		Cells Differentiate During Development Leading to	78		
	italies of finance storagy by the standers			Entire Organisms The Cells of the Nematode Worm, <i>Caenorhabditis</i>	78		
1.6	SUMMARY AND CONCLUSIONS	32		Elegans, Have Been Charted, Yielding a Cell-by-Cell			
1.7	FURTHER READING	32		Picture of the Organism	80		
1.8	REFERENCES	33		Higher-Level Structures Exist as Colonies of			
Chan	ter 2 What and Where: Construction			Organisms	82		
	s for Cells and Organisms	35	2.4	SUMMARY AND CONCLUSIONS	83		
			2.5	PROBLEMS	83		
2.1 2.1.1	AN ODE TO <i>E. COLI</i> The Bacterial Standard Ruler	35 37	2.6	FURTHER READING	84		
2.1.1	The Bacterium <i>E. coli</i> Will Serve as Our	37	2.7	REFERENCES	85		
	Standard Ruler	37					
2.1.2	Taking the Molecular Census	38	Chap	ter 3 When: Stopwatches at			
	The Cellular Interior Is Highly Crowded, with Mean		Many	/ Scales	87		
	Spacings Between Molecules That Are Comparable to Molecular Dimensions	48	3.1	THE HIERARCHY OF TEMPORAL SCALES	87		
2.1.3	Looking Inside Cells	49	3.1.1	The Pageant of Biological Processes	89		
2.1.4	Where Does <i>E. coli</i> Fit?	51		Biological Processes Are Characterized by a Huge	٠.		
	Biological Structures Exist Over a Huge Range of		2 7 2	Diversity of Time Scales	89		
	Scales	51	3.1.2	The Evolutionary Stopwatch	95		

3.1.3	The Cell Cycle and the Standard Clock The <i>E. coli</i> Cell Cycle Will Serve as Our Standard	99		Structural Biology Has Its Roots in the Determination of the Structure of Hemoglobin	145
	Stopwatch	99	422		145
3.1.4	Three Views of Time in Biology	105	4.2.3 4.2.4	Hemoglobin and Molecular Models of Disease The Rise of Allostery and Cooperativity	146
2.2	DROCEDURAL TIME	100	4.3	BACTERIOPHAGES AND MOLECULAR BIOLOGY	147
3.2	PROCEDURAL TIME	106	4.3.1	Bacteriophages and the Origins of Molecular Biology	
3.2.1	The Machines (or Processes) of the Central Dogma The Central Dogma Describes the Processes	107	7.5.1	Bacteriophages Have Sometimes Been Called the	140
	Whereby the Genetic Information Is Expressed			"Hydrogen Atoms of Biology"	148
	Chemically	107		Experiments on Phages and Their Bacterial Hosts	
	The Processes of the Central Dogma Are Carried Out			Demonstrated That Natural Selection Is Operative in	
	by Sophisticated Molecular Machines	108		Microscopic Organisms	148
3.2.2	Clocks and Oscillators	110		The Hershey-Chase Experiment Both Confirmed the	
	Developing Embryos Divide on a Regular Schedule			Nature of Genetic Material and Elucidated One of the	
	Dictated by an Internal Clock	111		Mechanisms of Viral DNA Entry into Cells	149
	Diurnal Clocks Allow Cells and Organisms to Be on			Experiments on Phage T4 Demonstrated the Sequence Hypothesis of Collinearity of DNA and	
	Time Everyday	111		Proteins	150
3.3	RELATIVE TIME	114		The Triplet Nature of the Genetic Code and DNA	130
3.3.1	Checkpoints and the Cell Cycle	115		Sequencing Were Carried Out on Phage Systems	150
3.3.1	The Eukaryotic Cell Cycle Consists of Four Phases	113		Phages Were Instrumental in Elucidating the	
	Involving Molecular Synthesis and Organization	115		Existence of mRNA	151
3.3.2	Measuring Relative Time	117		General Ideas about Gene Regulation Were Learned	
	Genetic Networks Are Collections of Genes			from the Study of Viruses as a Model System	152
	Whose Expression Is Interrelated	117	4.3.2	Bacteriophages and Modern Biophysics	153
	The Formation of the Bacterial Flagellum Is	110		Many Single- Molecule Studies of Molecular Motors	- 1 - 1
2 2 2	Intricately Organized in Space and Time	119		Have Been Performed on Motors from Bacteriophages	5154
3.3.3	Killing the Cell: The Life Cycles of Viruses Viral Life Cycles Include a Series of Self-Assembly	120	4.4	A TALE OF TWO CELLS: E. COLI AS A MODEL SYSTEM	154
	Processes	121	4.4.1	Bacteria and Molecular Biology	154
3.3.4	The Process of Development	122	4.4.2	E. coli and the Central Dogma	156
3.3.1	The Process of Development	122		The Hypothesis of Conservative Replication Has	
3.4	MANIPULATED TIME	125		Falsifiable Consequences	156
3.4.1	Chemical Kinetics and Enzyme Turnover	125		Extracts from E. coli Were Used to Perform In Vitro	157
3.4.2	Beating the Diffusive Speed Limit	126	4.4.3	Synthesis of DNA, mRNA, and Proteins The <i>lac</i> Operon as the "Hydrogen Atom" of Genetic	157
	Diffusion Is the Random Motion of Microscopic		4.4.3	Circuits	157
	Particles in Solution	127		Gene Regulation in <i>E. coli</i> Serves as a Model for	137
	Diffusion Times Depend upon the Length Scale	127		Genetic Circuits in General	157
	Diffusive Transport at the Synaptic Junction Is the	127		The lac Operon Is a Genetic Network That Controls	
	Dynamical Mechanism for Neuronal Communication	128		the Production of the Enzymes Responsible for	
	Molecular Motors Move Cargo over Large Distances			Digesting the Sugar Lactose	158
	in a Directed Way	129	4.4.4	Signaling and Motility: The Case of Bacterial	1.50
	Membrane-Bound Proteins Transport Molecules			Chemotaxis E. coli Has Served as a Model System for the	159
	from One Side of a Membrane to the Other	130		Analysis of Cell Motility	159
3.4.3	Beating the Replication Limit	131		, mary sis or cen mountly	
3.4.4	Eggs and Spores: Planning for the Next Generation	122	4.5	YEAST: FROM BIOCHEMISTRY TO THE CELL CYCLE	161
	Generation	132		Yeast Has Served as a Model System Leading to	
3.5	SUMMARY AND CONCLUSIONS	133		Insights in Contexts Ranging from Vitalism to the	
3.6	PROBLEMS	133		Functioning of Enzymes to Eukaryotic Gene Regulation	161
3.7	FURTHER READING	136	4.5.1	Yeast and the Rise of Biochemistry	162
3.8	REFERENCES	136	4.5.2	Dissecting the Cell Cycle	162
5.0	NEI ERENCES	150	4.5.3	Deciding Which Way Is Up: Yeast and Polarity	164
Chapt	er 4 Who: "Bless the Little Beasties"	137	4.5.4	Dissecting Membrane Traffic	166
-	CHOOSING A GRAIN OF SAND		4.5.5	Genomics and Proteomics	167
4.1	Modern Genetics Began with the Use of Peas as a	137	4.6	FLIES AND MODERN BIOLOGY	170
	Model System	138	4.6.1	Flies and the Rise of Modern Genetics	170
4.1.1	Biochemistry and Genetics	138	4.0.1	Drosophila melanogaster Has Served as a Model	170
	Distinction y and selected	. 50		System for Studies Ranging from Genetics to	
4.2	HEMOGLOBIN AS A MODEL PROTEIN	143		Development to the Functioning of the Brain and	
4.2.1	Hemoglobin, Receptor-Ligand Binding, and the			Even Behavior	170
	Other Bohr	143	4.6.2	How the Fly Got His Stripes	171
	The Binding of Oxygen to Hemoglobin Has Served		4.7	OF MICE AND MEN	173
	as a Model System for Ligand–Receptor Interactions	143	4.7	THE CASE FOR EXOTICA	173
	More Generally Quantitative Analysis of Hemoglobin Is Based upon	143	4.8.1	Specialists and Experts	174
	Measuring the Fractional Occupancy of the		4.8.2	The Squid Giant Axon and Biological Electricity	175
	Oxygen-Binding Sites as a Function of Oxygen			There Is a Steady-State Potential Difference Across	
	Pressure	144		the Membrane of Nerve Cells	176
4.2.2	Hemoglobin and the Origins of Structural Biology	144		Nerve Cells Propagate Electrical Signals and Use	
	The Study of the Mass of Hemoglobin Was Central in			Them to Communicate with Each Other	176
	the Development of Centrifugation	145	4.8.3	Exotica Toolkit	178

4.9	SUMMARY AND CONCLUSIONS	179	5.6	SUMMARY AND CONCLUSIONS	231
4.10	PROBLEMS	179	5.7	APPENDIX: THE EULER-LAGRANGE EQUATIONS,	
4.11	FURTHER READING	181		FINDING THE SUPERLATIVE	232
4.12	REFERENCES	183		Finding the Extrema of Functionals Is Carried Out Using the Calculus of Variations	232
PAR	T 2 LIFE AT REST 1	85		The Euler–Lagrange Equations Let Us Minimize Functionals by Solving Differential Equations	232
	i z zne znikesi i		5.8	PROBLEMS	233
Chapt	er 5 Mechanical and Chemical		5.9	FURTHER READING	235
-	ibrium in the Living Cell	187	5.10	REFERENCES	236
5.1	ENERGY AND THE LIFE OF CELLS	187			
5.1.1	The Interplay of Deterministic and Thermal	107	Chap	ter 6 Entropy Rules!	237
	Forces	189	6.1	THE ANALYTICAL ENGINE OF STATISTICAL	
	Thermal Jostling of Particles Must Be Accounted for	100		MECHANICS	237
5.1.2	in Biological Systems Constructing the Cell: Managing the Mass and	189		The Probability of Different Microstates Is Determined by Their Energy	240
3.1.2	Energy Budget of the Cell	190	6.1.1	A First Look at Ligand–Receptor Binding	241
			6.1.2	The Statistical Mechanics of Gene Expression: RNA	
5.2	BIOLOGICAL SYSTEMS AS MINIMIZERS	200		Polymerase and the Promoter	244
5.2.1	Equilibrium Models for Out of Equilibrium Systems	200		A Simple Model of Gene Expression Is to Consider	
	Equilibrium Models Can Be Used for Nonequilibrium Problems if Certain Processes Happen Much Faster			the Probability of RNA Polymerase Binding at the Promoter	245
	Than Others	201		Most Cellular RNA Polymerase Molecules Are Bound	213
5.2.2	Proteins in "Equilibrium"	202		to DNA	245
	Protein Structures are Free-Energy Minimizers	203		The Binding Probability of RNA Polymerase to Its	
5.2.3	Cells in "Equilibrium"	204		Promoter Is a Simple Function of the Number of	2.47
5.2.4	Mechanical Equilibrium from a Minimization Perspective	204	612	Polymerase Molecules and the Binding Energy	247
	The Mechanical Equilibrium State is Obtained by	204	6.1.3	Classic Derivation of the Boltzmann Distribution The Boltzmann Distribution Gives the Probability of	248
	Minimizing the Potential Energy	204		Microstates for a System in Contact with a Thermal	
				Reservoir	248
5.3	THE MATHEMATICS OF SUPERLATIVES	209	6.1.4	Boltzmann Distribution by Counting	250
5.3.1	The Mathematization of Judgement: Functions and Functionals	209		Different Ways of Partitioning Energy Among	250
	Functionals Deliver a Number for Every Function	209	6.1.5	Particles Have Different Degeneracies Boltzmann Distribution by Guessing	250 253
	They Are Given	210	0.1.5	Maximizing the Entropy Corresponds to Making a	233
5.3.2	The Calculus of Superlatives	211		Best Guess When Faced with Limited Information	253
	Finding the Maximum and Minimum Values of a			Entropy Maximization Can Be Used as a Tool for	
	Function Requires That We Find Where the Slope of the Function Equals Zero	211		Statistical Inference	255
	the Function Equals Zero	211		The Boltzmann Distribution is the Maximum Entropy Distribution in Which the Average Energy is	/
5.4	CONFIGURATIONAL ENERGY	214		Prescribed as a Constraint	258
	In Mechanical Problems, Potential Energy				
F 4 1	Determines the Equilibrium Structure	214	6.2	ON BEING IDEAL	259
5.4.1	Hooke's Law: Actin to Lipids There is a Linear Relation Between Force and	216	6.2.1	Average Energy of a Molecule in a Gas	259
	Extension of a Beam	216		The Ideal Gas Entropy Reflects the Freedom to Rearrange Molecular Positions and Velocities	259
	The Energy to Deform an Elastic Material is a		6.2.2	Free Energy of Dilute Solutions	262
	Quadratic Function of the Strain	217		The Chemical Potential of a Dilute Solution Is a	
5.5	STRUCTURES AS FREE-ENERGY MINIMIZERS	219		Simple Logarithmic Function of the Concentration	262
5.5	The Entropy is a Measure of the Microscopic	213	6.2.3	Osmotic Pressure as an Entropic Spring	264
	Degeneracy of a Macroscopic State	219		Osmotic Pressure Arises from Entropic Effects	264
5.5.1	Entropy and Hydrophobicity	222		Viruses, Membrane-Bound Organelles, and Cells	201
	Hydrophobicity Results from Depriving Water			Are Subject to Osmotic Pressure	265
	Molecules of Some of Their Configurational Entropy	222		Osmotic Forces Have Been Used to Measure the	
	Amino Acids Can Be Classified According to Their	222		Interstrand Interactions of DNA	266
	Hydrophobicity	224	6.3	THE CALCULUS OF EQUILIBRIUM APPLIED: LAW OF	
	When in Water, Hydrocarbon Tails on Lipids Have an		0.5	MASS ACTION	267
	Entropy Cost	225	6.3.1	Law of Mass Action and Equilibrium Constants	267
5.5.2	Gibbs and the Calculus of Equilibrium Thermal and Chemical Equilibrium are Obtained by	225		Equilibrium Constants are Determined by Entropy	267
	Maximizing the Entropy	225		Maximization	267
5.5.3	Departure from Equilibrium and Fluxes	227	6.4	APPLICATIONS OF THE CALCULUS OF EQUILIBRIUM	270
5.5.4	Structure as a Competition	228	6.4.1	A Second Look at Ligand-Receptor Binding	270
	Free Energy Minimization Can Be Thought		6.4.2	Measuring Ligand–Receptor Binding	272
	of as an Alternative Formulation of Entropy Maximization	228	6.4.3	Beyond Simple Ligand–Receptor Binding: The Hill Function	273
5.5.5	An Ode to ΔG	230	6.4.4	ATP Power	273
	The Free Energy Reflects a Competition Between			The Energy Released in ATP Hydrolysis Depends	
	Energy and Entropy	230		Upon the Concentrations of Reactants and Products	275

6.5	SUMMARY AND CONCLUSIONS	276		The Probability of a Given Macromolecular State	
6.6	PROBLEMS	276		Depends Upon Its Microscopic Degeneracy	315
6.7	FURTHER READING	278		Entropy Determines the Elastic Properties of	
6.8	REFERENCES	278		Polymer Chains	316
				The Persistence Length Is a Measure of the Length Scale Over Which a Polymer Remains Roughly	
Chap	ter 7 Two-State Systems: From Ion			Straight	319
-	nels to Cooperative Binding	281	8.2.2	How Big Is a Genome?	321
7.1	MACROMOLECULES WITH MULTIPLE STATES	281	8.2.3	The Geography of Chromosomes Genetic Maps and Physical Maps of Chromosomes	322
7.1.1	The Internal State Variable Idea	281		Describe Different Aspects of Chromosome	
	The State of a Protein or Nucleic Acid Can Be			Structure	322
	Characterized Mathematically Using a State Variable	282		Different Structural Models of Chromatin Are	
7.1.2	Ion Channels as an Example of Internal State	202		Characterized by the Linear Packing Density of DNA	323
7.1.2	Variables	286		Spatial Organization of Chromosomes Shows	323
	The Open Probability $\langle \sigma \rangle$ of an Ion Channel Can Be			Elements of Both Randomness and Order	324
	Computed Using Statistical Mechanics	287		Chromosomes Are Tethered at Different Locations	325
7.2	STATE VARIABLE DESCRIPTION OF BINDING	289		Chromosome Territories Have Been Observed in Bacterial Cells	327
7.2.1	The Gibbs Distribution: Contact with a Particle			Chromosome Territories in <i>Vibrio cholerae</i> Can Be	327
	Reservoir	289		Explored Using Models of Polymer Confinement	
	The Gibbs Distribution Gives the Probability of Microstates for a System in Contact with a Thermal			and Tethering	328
	and Particle Reservoir	289	8.2.4	DNA Looping: From Chromosomes to Gene	222
7.2.2	Simple Ligand-Receptor Binding Revisited	291		Regulation The Lac Repressor Molecule Acts Mechanistically	333
7.2.3	Phosphorylation as an Example of Two Internal			by Forming a Sequestered Loop in DNA	334
	State Variables Phosphorylation Can Change the Energy Balance	292		Looping of Large DNA Fragments Is Dictated	
	Between Active and Inactive States	293		by the Difficulty of Distant Ends Finding Each Other	334
	Two-Component Systems Exemplify the Use of			Chromosome Conformation Capture Reveals the Geometry of Packing of Entire Genomes	
	Phosphorylation in Signal Transduction	295		in Cells	336
7.2.4	Hemoglobin as a Case Study in Cooperativity The Binding Affinity of Oxygen for Hemoglobin	298			
	Depends upon Whether or Not Other Oxygens Are		8.3	THE NEW WORLD OF SINGLE-MOLECULE	337
	Already Bound	298		MECHANICS Single-Molecule Measurement Techniques Lead to	337
	A Toy Model of a Dimeric Hemoglobin (Dimoglobin)			Force Spectroscopy	337
	Illustrate the Idea of Cooperativity	298	8.3.1	Force-Extension Curves: A New Spectroscopy	339
	The Monod-Wyman-Changeux (MWC) Model Provides a Simple Example of Cooperative Binding	300		Different Macromolecules Have Different Force	220
	Statistical Models of the Occupancy of Hemoglobin	300	8.3.2	Signatures When Subjected to Loading Random Walk Models for Force–Extension Curves	339 340
	Can Be Written Using Occupation Variables	301	0.5.2	The Low-Force Regime in Force–Extension Curves	340
	There is a Logical Progression of Increasingly	201		Can Be Understood Using the Random Walk Model	340
	Complex Binding Models for Hemoglobin	301	8.4	PROTEINS AS RANDOM WALKS	344
7.3	ION CHANNELS REVISITED: LIGAND-GATED		8.4.1	Compact Random Walks and the Size of Proteins	345
	CHANNELS AND THE MWC MODEL	305	0.1.1	The Compact Nature of Proteins Leads to an	313
7.4	SUMMARY AND CONCLUSIONS	308		Estimate of Their Size	345
7.5	PROBLEMS	308	8.4.2	Hydrophobic and Polar Residues: The HP Model	346
7.6	FURTHER READING	310		The HP Model Divides Amino Acids into Two Classes: Hydrophobic and Polar	346
7.7	REFERENCES	310	8.4.3	HP Models of Protein Folding	348
			0.5	SUMMANDY AND CONCURSIONS	251
	ter 8 Random Walks and the		8.5	SUMMARY AND CONCLUSIONS	351 351
Struc	ture of Macromolecules	311	8.6 8.7	PROBLEMS	351
8.1	WHAT IS A STRUCTURE: PDB OR R_{G} ?	311	8.8	FURTHER READING REFERENCES	353
8.1.1	Deterministic versus Statistical Descriptions of	212	0.0	REFERENCES	333
	Structure PDB Files Reflect a Deterministic Description of	312	Chan	tow O. Flootwootstics for Solty	
	Macromolecular Structure	312	Solut	ter 9 Electrostatics for Salty	255
	Statistical Descriptions of Structure Emphasize				355
	Average Size and Shape Rather Than Atomic Coordinates	312	9.1	WATER AS LIFE'S AETHER	355
	Coordinates	312	9.2	THE CHEMISTRY OF WATER	358
8.2	MACROMOLECULES AS RANDOM WALKS	312	9.2.1	pH and the Equilibrium Constant	358
	Random Walk Models of Macromolecules View			Dissociation of Water Molecules Reflects a	
0 2 1	Them as Rigid Segments Connected by Hinges	312		Competition Between the Energetics of Binding and the Entropy of Charge Liberation	358
8.2.1	A Mathematical Stupor In Random Walk Models of Polymers, Every	313	9.2.2	The Charge on DNA and Proteins	359
	Macromolecular Configuration Is Equally Probable	313	5.2.2	The Charge State of Biopolymers Depends	555
	The Mean Size of a Random Walk Macromolecule			upon the pH of the Solution	359
	Scales as the Square Root of the Number of	27.4		Different Amino Acids Have Different Charge States	359
	Segments, \sqrt{N}	314	9.2.3	Salt and Binding	360

9.3	ELECTROSTATICS FOR SALTY SOLUTIONS	360	10.4	DNA PACKING: FROM VIRUSES TO EUKARYOTES	398
9.3.1	An Electrostatics Primer	361		The Packing of DNA in Viruses and Cells Requires	
	A Charge Distribution Produces an Electric Field			Enormous Volume Compaction	398
	Throughout Space	362	10.4.1	The Problem of Viral DNA Packing	400
	The Flux of the Electric Field Measures the Density	262		Structural Biologists Have Determined the Structure	400
	of Electric Field Lines	363		of Many Parts in the Viral Parts List	400
	The Electrostatic Potential Is an Alternative Basis	264		The Packing of DNA in Viruses Results in a Free-Energy Penalty	402
	for Describing the Electrical State of a System	364		3, ,	402
	There Is an Energy Cost Associated With Assembling a Collection of Charges	367		A Simple Model of DNA Packing in Viruses Uses the Elastic Energy of Circular Hoops	403
	The Energy to Liberate Ions from Molecules Can	307		DNA Self-Interactions Are also Important in	403
	Be Comparable to the Thermal Energy	368		Establishing the Free Energy Associated with DNA	
9.3.2	The Charged Life of a Protein	369		Packing in Viruses	404
9.3.3	The Notion of Screening: Electrostatics in Salty	303		DNA Packing in Viruses Is a Competition Between	
	Solutions	370		Elastic and Interaction Energies	406
	Ions in Solution Are Spatially Arranged to Shield		10.4.2	Constructing the Nucleosome	407
	Charged Molecules Such as DNA	370		Nucleosome Formation Involves Both Elastic	
	The Size of the Screening Cloud Is Determined			Deformation and Interactions Between Histones	
	by a Balance of Energy and Entropy of the	2 = 1		and DNA	408
	Surrounding lons	371	10.4.3	Equilibrium Accessibility of Nucleosomal DNA	409
9.3.4	The Poisson–Boltzmann Equation	374		The Equilibrium Accessibility of Sites within the	
	The Distribution of Screening Ions Can Be Found by Minimizing the Free Energy	374		Nucleosome Depends upon How Far They Are from the Unwrapped Ends	409
	The Screening Charge Decays Exponentially Around	374		from the onwrapped chas	403
	Macromolecules in Solution	376	10.5	THE CYTOSKELETON AND BEAM THEORY	413
9.3.5	Viruses as Charged Spheres	377		Eukaryotic Cells Are Threaded by Networks	
3.3.3	Thuses as charged spheres	311		of Filaments	413
9.4	SUMMARY AND CONCLUSION	379	10.5.1	The Cellular Interior: A Structural Perspective	414
9.5	PROBLEMS	380		Prokaryotic Cells Have Proteins Analogous to the	
9.6	FURTHER READING	382		Eukaryotic Cytoskeleton	416
9.7	REFERENCES	382	10.5.2		416
J.,		302		The Cytoskeleton Can Be Viewed as a Collection	
~ !				of Elastic Beams	416
	ter 10 Beam Theory: Architecture		10.5.3		419
for C	ells and Skeletons	383	10 5 4	A Beam Subject to a Large Enough Force Will Buckle	419
10.1	BEAMS ARE EVERYWHERE: FROM FLAGELLA TO THE		10.5.4	Estimate of the Buckling Force Beam Buckling Occurs at Smaller Forces for Longer	420
	CYTOSKELETON	383		Beams	420
	One-Dimensional Structural Elements Are the			beams	
	Basis of Much of Macromolecular and Cellular		10.6	SUMMARY AND CONCLUSIONS	421
	Architecture	383	10.7	APPENDIX: THE MATHEMATICS OF THE WORM-LIKE	
100	CEONETRY AND ENERGETICS OF BEAM			CHAIN	421
10.2	GEOMETRY AND ENERGETICS OF BEAM DEFORMATION	385	10.8	PROBLEMS	424
10.2.1	Stretch, Bend, and Twist	385	10.9	FURTHER READING	426
10.2.1	Beam Deformations Result in Stretching, Bending,	303	10.10	REFERENCES	426
	and Twisting	385			
	A Bent Beam Can Be Analyzed as a Collection of		Chap	ter 11 Biological Membranes: Life in	
	Stretched Beams	385	Two I	Dimensions	427
	The Energy Cost to Deform a Beam Is a Quadratic				427
	Function of the Strain	387	11.1	THE NATURE OF BIOLOGICAL MEMBRANES Cells and Membranes	427
10.2.2	Beam Theory and the Persistence Length: Stiffness		11.1.1	Cells and Their Organelles Are Bound by Complex	42
	is Relative	389		Membranes	427
	Thermal Fluctuations Tend to Randomize the Orientation of Biological Polymers	389		Electron Microscopy Provides a Window on Cellular	
	The Persistence Length Is the Length Over Which a	389		Membrane Structures	429
	Polymer Is Roughly Rigid	390	11.1.2	The Chemistry and Shape of Lipids	43
	The Persistence Length Characterizes the	330		Membranes Are Built from a Variety of Molecules	
	Correlations in the Tangent Vectors at Different			That Have an Ambivalent Relationship with Water	431
	Positions Along the Polymer	390		The Shapes of Lipid Molecules Can Induce	
	The Persistence Length Is Obtained by Averaging			Spontaneous Curvature on Membranes	436
	Over All Configurations of the Polymer	391	11.1.3	The Liveliness of Membranes	436
10.2.3	Elasticity and Entropy: The Worm-Like Chain	392		Membrane Proteins Shuttle Mass Across Membranes	437
	The Worm-Like Chain Model Accounts for Both			Membrane Proteins Communicate Information	42.
	the Elastic Energy and Entropy of Polymer			Across Membranes	439
	Chains	392		Specialized Membrane Proteins Generate ATP	439
10.2	THE MECHANICS OF TRANSCRIPTION AT			Membrane Proteins Can Be Reconstituted in Vesicles	439
10.3	THE MECHANICS OF TRANSCRIPTIONAL REGULATION: DNA LOOPING REDUX	394	11.2	ON THE SPRINGINESS OF MEMBRANES	440
10.3.1		394 394	11.2.1		440
10.5.1	The <i>lac</i> Operon and Other Looping Systems Transcriptional Regulation Can Be Effected	33 4	11.2.1	An Interlude on Membrane Geometry Membrane Stretching Geometry Can Be Described	44(
	by DNA Looping	395		by a Simple Area Function	441
10.3.2	Energetics of DNA Looping	395		Membrane Bending Geometry Can Be Described by	
10.3.3	Putting It All Together: The J-Factor	396		a Simple Height Function, $h(x, y)$	44

	Membrane Compression Geometry Can Be Described by a Simple Thickness Function, $w(x,y)$ Membrane Shearing Can Be Described by an Angle	444		Water as a Continuum Though Fluids Are Composed of Molecules It Is Possible to Treat Them as a Continuous Medium	484
11.2.2	Variable, θ Free Energy of Membrane Deformation There Is a Free-Energy Penalty Associated with	444 445	12.2.2	What Can Newton Tell Us? Gradients in Fluid Velocity Lead to Shear Forces $F = ma$ for Fluids	485 485 486
	Changing the Area of a Lipid Bilayer There Is a Free-Energy Penalty Associated with	445	12.2.4	The Newtonian Fluid and the Navier–Stokes Equations The Velocity of Fluids at Surfaces Is Zero	490 491
	Bending a Lipid Bilayer There Is a Free-Energy Penalty for Changing the	446			
	Thickness of a Lipid Bilayer There Is an Energy Cost Associated with the	446	12.3 12.3.1	THE RIVER WITHIN: FLUID DYNAMICS OF BLOOD Boats in the River: Leukocyte Rolling and Adhesion	491 493
	Gaussian Curvature	447	12.4		
11.3	STRUCTURE, ENERGETICS, AND FUNCTION OF VESICLES	448	12.4 12.4.1 12.4.2	THE LOW REYNOLDS NUMBER WORLD Stokes Flow: Consider a Spherical Bacterium Stokes Drag in Single-Molecule Experiments	495 495 498
11.3.1	Measuring Membrane Stiffness Membrane Elastic Properties Can Be Measured by Stretching Vesicles	448 448	12.1.2	Stokes Drag Is Irrelevant for Optical Tweezers Experiments	498
11.3.2	Membrane Pulling	450	12.4.3	Dissipative Time Scales and the Reynolds	400
11.3.3	Vesicles in Cells Vesicles Are Used for a Variety of Cellular Transport	453	12.4.4	Number Fish Gotta Swim, Birds Gotta Fly, and Bacteria Gotta	499
	Processes There Is a Fixed Free-Energy Cost Associated with	453		Swim Too Reciprocal Deformation of the Swimmer's Body	500
	Spherical Vesicles of All Sizes	455		Does Not Lead to Net Motion at Low Reynolds Number	502
	Vesicle Formation Is Assisted by Budding Proteins There Is an Energy Cost to Disassemble Coated	456	12.4.5	Centrifugation and Sedimentation: Spin It Down	502
	Vesicles	458	12.5	SUMMARY AND CONCLUSIONS	504
11.4	FUSION AND FISSION	458	12.6	PROBLEMS	505
11.4.1	Pinching Vesicles: The Story of Dynamin	459	12.7 12.8	FURTHER READING REFERENCES	507 507
11.5	MEMBRANES AND SHAPE	462	12.0	REFERENCES	307
11.5.1	The Shapes of Organelles The Surface Area of Membranes Due to Pleating Is	462	Chan	ter 13 A Statistical View of	
	So Large That Organelles Can Have Far More Area	463			50 9
11.5.2	than the Plasma Membrane The Shapes of Cells	463 465	13.1	DIFFUSION IN THE CELL	509
	The Equilibrium Shapes of Red Blood Cells Can Be Found by Minimizing the Free Energy	466	13.1.1 13.1.2	Biological Distances Measured in Diffusion Times	510 511
11.6 11.6.1	THE ACTIVE MEMBRANE Mechanosensitive Ion Channels and Membrane	467		The Time It Takes a Diffusing Molecule to Travel a Distance <i>L</i> Grows as the Square of the Distance	512
11.0.1	Elasticity Mechanosensitive Ion Channels Respond to	467		Diffusion Is Not Effective Over Large Cellular Distances	512
11.6.2	Membrane Tension Elastic Deformations of Membranes Produced by	467	13.1.3	Random Walk Redux	514
	Proteins Proteins Induce Elastic Deformations in the	468	13.2	CONCENTRATION FIELDS AND DIFFUSIVE DYNAMICS Fick's Law Tells Us How Mass Transport Currents	515
	Surrounding Membrane Protein-Induced Membrane Bending Has an	468		Arise as a Result of Concentration Gradients The Diffusion Equation Results from Fick's Law and	517
	Associated Free-Energy Cost	469	1221	Conservation of Mass	518
11.6.3	One-Dimensional Solution for MscL Membrane Deformations Can Be Obtained by Minimizing the Membrane Free Energy	470 470	13.2.1 13.2.2	Diffusion by Summing Over Microtrajectories Solutions and Properties of the Diffusion Equation Concentration Profiles Broaden Over Time in a Very	518 524
	The Membrane Surrounding a Channel Protein Produces a Line Tension	472	13.2.3	Precise Way	524 525
117	CLIMMARY AND CONCLUSIONS	475	13.2.4 13.2.5	•	529 530
11.7 11.8	SUMMARY AND CONCLUSIONS PROBLEMS	475 476			
11.9	FURTHER READING	479	13.3 13.3.1	DIFFUSION TO CAPTURE Modeling the Cell Signaling Problem	532 532
11.10	REFERENCES	479	13.3.1	Perfect Receptors Result in a Rate of Uptake $4\pi Dc_0 a$ A Distribution of Receptors Is Almost as Good as a	
PAR ⁻	Γ3 LIFE IN MOTION 4	81		Perfectly Absorbing Sphere Real Receptors Are Not Always Uniformly Distributed	534 3536
		483	13.3.2		537
Ciiapi 12.1	PUTTING WATER IN ITS PLACE	483	13.4	SUMMARY AND CONCLUSIONS	538
12.2	HYDRODYNAMICS OF WATER AND OTHER FLUIDS	484	13.5	PROBLEMS	539

13.6	FURTHER READING	540		Decay of One Species Corresponds to Growth in the	
13.7	REFERENCES	540	15.2.4	Number of a Second Species Bimolecular Reactions	585 586
			13.2.4	Chemical Reactions Can Increase the Concentration	360
-	ter 14 Life in Crowded and			of a Given Species	586
Disor	dered Environments	543		Equilibrium Constants Have a Dynamical	588
14.1	CROWDING, LINKAGE, AND ENTANGLEMENT	543	15.2.5	Interpretation in Terms of Reaction Rates Dynamics of Ion Channels as a Case Study	589
14.1.1 14.1.2	The Cell Is Crowded Macromolecular Networks: The Cytoskeleton	544	13.2.3	Rate Equations for Ion Channels Characterize the	303
14.1.2	and Beyond	545		Time Evolution of the Open and Closed Probability	590
	Crowding on Membranes	546	15.2.6 15.2.7	Rapid Equilibrium	591 596
14.1.4	Consequences of Crowding	547	13.2.7	Michaelis-Menten and Enzyme Kinetics	390
	Crowding Alters Biochemical Equilibria Crowding Alters the Kinetics within Cells	548 548	15.3	THE CYTOSKELETON IS ALWAYS UNDER	
	Crowding Arters the Kinetics within Cens	340	15.2.1	CONSTRUCTION The Following the Control of the Contr	599
14.2	EQUILIBRIA IN CROWDED ENVIRONMENTS	550	15.3.1	The Eukaryotic Cytoskeleton The Cytoskeleton Is a Dynamical Structure That Is	599
14.2.1	Crowding and Binding Lattice Models of Solution Provide a Simple	550		Always Under Construction	599
	Picture of the Role of Crowding in Biochemical		15.3.2	The Curious Case of the Bacterial Cytoskeleton	600
	Equilibria	550	15.4	SIMPLE MODELS OF CYTOSKELETAL POLYMERIZATION	602
14.2.2	Osmotic Pressures in Crowded Solutions	552	13.1	The Dynamics of Polymerization Can Involve Many	002
1422	Osmotic Pressure Reveals Crowding Effects	552		Distinct Physical and Chemical Effects	603
14.2.3	Depletion Forces: Order from Disorder The Close Approach of Large Particles Excludes	554	15.4.1	The Equilibrium Polymer	604
	Smaller Particles Between Them, Resulting in an			Equilibrium Models of Cytoskeletal Filaments Describe the Distribution of Polymer Lengths for	
	Entropic Force	554		Simple Polymers	604
1424	Depletion Forces Can Induce Entropic Ordering!	559		An Equilibrium Polymer Fluctuates in Time	606
14.2.4	Excluded Volume and Polymers Excluded Volume Leads to an Effective Repulsion	559	15.4.2	Rate Equation Description of Cytoskeletal	
	Between Molecules	559		Polymerization Polymerization Reactions Can Be Described by Rate	609
	Self-avoidance Between the Monomers of a Polymer			Equations	609
1405	Leads to Polymer Swelling	561		The Time Evolution of the Probability Distribution	
14.2.5 14.2.6	Case Study in Crowding: How to Make a Helix Crowding at Membranes	563 565		$P_n(t)$ Can Be Written Using a Rate Equation	610
14.2.0	crowding at Membranes	303		Rates of Addition and Removal of Monomers Are	
14.3	CROWDED DYNAMICS	566		Often Different on the Two Ends of Cytoskeletal Filaments	612
14.3.1	Crowding and Reaction Rates Enzymatic Reactions in Cells Can Proceed Faster	566	15.4.3	Nucleotide Hydrolysis and Cytoskeletal	
	than the Diffusion Limit Using Substrate			Polymerization	614
	Channeling	566		ATP Hydrolysis Sculpts the Molecular Interface, Resulting in Distinct Rates at the Ends of	
	Protein Folding Is Facilitated by Chaperones	567		Cytoskeletal Filaments	614
14.3.2	Diffusion in Crowded Environments	567	15.4.4	•	615
14.4	SUMMARY AND CONCLUSIONS	569		A Toy Model of Dynamic Instability Assumes That	
14.5	PROBLEMS	569		Catastrophe Occurs When Hydrolyzed Nucleotides Are Present at the Growth Front	616
14.6	FURTHER READING	570		Are tresent at the growth from	010
14.7	REFERENCES	571	15.5	SUMMARY AND CONCLUSIONS	618
			15.6	PROBLEMS	619
Chapt	ter 15 Rate Equations and		15.7	FURTHER READING	621
Dyna	mics in the Cell	573	15.8	REFERENCES	621
15.1	BIOLOGICAL STATISTICAL DYNAMICS: A FIRST		Chan	ter 16 Dynamics of Molecular	
	LOOK	573	Moto		62 3
15.1.1	Cells as Chemical Factories	574			023
15.1.2	Dynamics of the Cytoskeleton	575	16.1	THE DYNAMICS OF MOLECULAR MOTORS: LIFE IN THE NOISY LANE	623
15.2	A CHEMICAL PICTURE OF BIOLOGICAL DYNAMICS	579	16.1.1	Translational Motors: Beating the Diffusive Speed	023
15.2.1	The Rate Equation Paradigm	579		Limit	625
	Chemical Concentrations Vary in Both Space and Time	580		The Motion of Eukaryotic Cilia and Flagella Is Driven	
	Rate Equations Describe the Time Evolution of	300		by Translational Motors Muscle Contraction Is Mediated by Myosin Motors	628 630
	Concentrations	580	16.1.2	Rotary Motors	634
15.2.2	All Good Things Must End	581	16.1.3	Polymerization Motors: Pushing by Growing	637
	Macromolecular Decay Can Be Described by a	F01	16.1.4	Translocation Motors: Pushing by Pulling	638
15.2.3	Simple, First-Order Differential Equation A Single-Molecule View of Degradation: Statistical	581	16.2	RECTIFIED BROWNIAN MOTION AND	
. 5.2.5	Mechanics Over Trajectories	582		MOLECULAR MOTORS	639
	Molecules Fall Apart with a Characteristic Lifetime	582	16.2.1	The Random Walk Yet Again	640
	Decay Processes Can Be Described with Two-State	F.0.2		Molecular Motors Can Be Thought of as Random	640
	Trajectories	583		Walkers	640

16.2.2	The One-State Model	641		Voltage-Gated Channels Result in a Nonlinear	
	The Dynamics of a Molecular Motor Can Be Written Using a Master Equation	642		Current-Voltage Relation for the Cell Membrane	699
	The Driven Diffusion Equation Can Be Transformed	042		A Patch of Membrane Acts as a Bistable Switch The Dynamics of Voltage Relaxation Can Be	700
	into an Ordinary Diffusion Equation	644		Modeled Using an RC Circuit	702
16.2.3	Motor Stepping from a Free-Energy Perspective	647	17.4.2	•	703
16.2.4	The Two-State Model The Dynamics of a Two-State Motor Is Described	651	17.4.3	Depolarization Waves Waves of Membrane Depolarization Rely on	705
	by Two Coupled Rate Equations	651		Sodium Channels Switching into the Open State	705
	Internal States Reveal Themselves in the Form		17.4.4	Spikes	710
160 =	of the Waiting Time Distribution	654	17.4.5	3 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	712
16.2.5 16.2.6	More General Motor Models Coordination of Motor Protein Activity	656 658		Inactivation of Sodium Channels Leads to Propagating Spikes	712
16.2.7	Rotary Motors	660		Tropagating Spikes	, , , _
16.2	DOLVMEDIZATION AND TRANSLOCATION AS		17.5	SUMMARY AND CONCLUSIONS	714
16.3	POLYMERIZATION AND TRANSLOCATION AS MOTOR ACTION	663	17.6	PROBLEMS	714
16.3.1	The Polymerization Ratchet	663	17.7	FURTHER READING	715
	The Polymerization Ratchet Is Based on a		17.8	REFERENCES	715
	Polymerization Reaction That Is Maintained Out of Equilibrium	666	Chan	ter 18 Light and Life	717
	The Polymerization Ratchet Force–Velocity Can Be	000	18.1	INTRODUCTION	718
	Obtained by Solving a Driven Diffusion Equation	668	18.2	PHOTOSYNTHESIS	719
16.3.2	Force Generation by Growth	670	10.2	Organisms From All Three of the Great Domains	719
	Polymerization Forces Can Be Measured Directly	670		of Life Perform Photosynthesis	720
	Polymerization Forces Are Used to Center Cellular Structures	672	18.2.1	Quantum Mechanics for Biology	724
16.3.3	The Translocation Ratchet	673		Quantum Mechanical Kinematics Describes States of the System in Terms of Wave Functions	725
	Protein Binding Can Speed Up Translocation			Quantum Mechanical Observables Are Represented	123
	through a Ratcheting Mechanism	674		by Operators	728
	The Translocation Time Can Be Estimated by Solving a Driven Diffusion Equation	676		The Time Evolution of Quantum States Can Be	
	Solving a Briven Binasion Equation	0,0	1022	Determined Using the Schrödinger Equation	729
16.4	SUMMARY AND CONCLUSIONS	677	18.2.2	The Particle-in-a-Box Model Solutions for the Box of Finite Depth Do Not Vanish	730
16.5	PROBLEMS	677		at the Box Edges	731
16.6	FURTHER READING	679	18.2.3		733
16.7	REFERENCES	679		Absorption Wavelengths Depend Upon Molecular Size and Shape	735
Chap	ter 17 Biological Electricity		18.2.4	•	737
_		681		Excited Electrons Can Suffer Multiple Fates	737
17.1	THE ROLE OF ELECTRICITY IN CELLS	681		Electron Transfer in Photosynthesis Proceeds by	739
17.2	THE CHARGE STATE OF THE CELL	682		Tunneling Electron Transfer Between Donor and Acceptor Is	759
17.2.1	The Electrical Status of Cells and Their Membranes	682		Gated by Fluctuations of the Environment	745
17.2.2	Electrochemical Equilibrium and the Nernst Equation	683		Resonant Transfer Processes in the Antenna	
	Ion Concentration Differences Across Membranes Lead to Potential Differences	683		Complex Efficiently Deliver Energy to the Reaction	747
	Lead to rotelitial Differences	003	1825	Center Bioenergetics of Photosynthesis	747
17.3	MEMBRANE PERMEABILITY: PUMPS AND		10.2.3	Electrons Are Transferred from Donors to Acceptors	
	CHANNELS	685		Within and Around the Cell Membrane	748
	A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World	685		Water, Water Everywhere, and Not an Electron to Drink	750
	Signals in Cells Are Often Mediated by the Presence	003		Charge Separation across Membranes Results in a	730
	of Electrical Spikes Called Action Potentials	686		Proton-Motive Force	751
17.3.1	Ion Channels and Membrane Permeability	688	18.2.6		752
	Ion Permeability Across Membranes Is Mediated by Ion Channels	688	18.2.7 18.2.8	, 5 5	757 758
	A Simple Two-State Model Can Describe Many		10.2.0	rilotosynthesis in reispective	730
	of the Features of Voltage Gating of Ion Channels	689	18.3	THE VISION THING	759
17.3.2	Maintaining a Nonequilibrium Charge State	691	18.3.1 18.3.2	Bacterial "Vision" Missobial Phototoxis and Manipulating Colls with	760
	lons Are Pumped Across the Cell Membrane Against an Electrochemical Gradient	691	10.3.2	Microbial Phototaxis and Manipulating Cells with Light	763
			18.3.3	Animal Vision	763
17.4	THE ACTION POTENTIAL	693		There Is a Simple Relationship between Eye	765
17.4.1	Membrane Depolarization: The Membrane as a Bistable Switch	693		Geometry and Resolution The Resolution of Insect Eyes Is Governed by	765
	Coordinated Muscle Contraction Depends Upon	0.55		Both the Number of Ommatidia and Diffraction	
	Membrane Depolarization	694		Effects	768
	A Patch of Cell Membrane Can Be Modeled as an Electrical Circuit	696		The Light-Driven Conformational Change of Retinal Underlies Animal Vision	769
	The Difference Between the Membrane Potential and			Information from Photon Detection Is Amplified	709
	the Nernst Potential Leads to an Ionic Current			by a Signal Transduction Cascade in the	
	Across the Cell Membrane	698		Photoreceptor Cell	773

	The Vertebrate Visual System Is Capable of		19.3	REGULATORY DYNAMICS	835
1024	Detecting Single Photons	776	19.3.1	The Dynamics of RNA Polymerase and the	025
18.3.4	Sex, Death, and Quantum Mechanics Let There Be Light: Chemical Reactions Can Be Used	781		Promoter The Concentrations of Both RNA and Protein Can Be	835
	to Make Light	784		Described Using Rate Equations	835
10 4	CLIMMA DV AND CONCLUCIONS	705	19.3.2		838
18.4	SUMMARY AND CONCLUSIONS	785		Unregulated Promoters Can Be Described By a Poisson Distribution	841
18.5 18.6	APPENDIX: SIMPLE MODEL OF ELECTRON TUNNELING PROBLEMS	783 793	19.3.3	Dynamics of Regulated Promoters	843
18.7	FURTHER READING	795 795	13.3.3	The Two-State Promoter Has a Fano Factor Greater	013
18.8	REFERENCES	796		Than One	844
10.0	NEI EREINCES	750		Different Regulatory Architectures Have Different Fano Factors	849
			19.3.4		854
DA D	T 4 THE MEANING OF LIFE 3	20		Genetic Switches: Natural and Synthetic	861
PAR	T 4 THE MEANING OF LIFE 7	99	19.3.6	Genetic Networks That Oscillate	870
Chap	ter 19 Organization of Biological		19.4	CELLULAR FAST RESPONSE: SIGNALING	872
Netw		801	19.4.1	Bacterial Chemotaxis The MWC Model Can Be Used to Describe Bacterial	873
19.1	CHEMICAL AND INFORMATIONAL ORGANIZATION			Chemotaxis	878
	IN THE CELL	801		Precise Adaptation Can Be Described by a Simple	
	Many Chemical Reactions in the Cell are Linked in	001		Balance Between Methylation and Demethylation	881
	Complex Networks Genetic Networks Describe the Linkages Between	801	19.4.2	Biochemistry on a Leash Tethering Increases the Local Concentration of a	883
	Different Genes and Their Products	802		Ligand	884
	Developmental Decisions Are Made by Regulating			Signaling Networks Help Cells Decide When and	
	Genes	802		Where to Grow Their Actin Filaments for Motility	884
	Gene Expression Is Measured Quantitatively in Terms of How Much, When, and Where	804		Synthetic Signaling Networks Permit a Dissection of Signaling Pathways	885
	Terms of flow inden, when, and where	001		Jighannig Fathways	003
19.2	GENETIC NETWORKS: DOING THE RIGHT THING AT	0.07	19.5	SUMMARY AND CONCLUSIONS	888
	THE RIGHT TIME Promoter Occupancy Is Dictated by the Presence	807	19.6	PROBLEMS	889
	of Regulatory Proteins Called Transcription		19.7	FURTHER READING	891
	Factors	808	19.8	REFERENCES	892
19.2.1	The Molecular Implementation of Degulations				
13.2.1	The Molecular Implementation of Regulation:	909	Chap	ter 20 Biological Patterns: Order	
13.2.1	Promoters, Activators, and Repressors	808	_	ter 20 Biological Patterns: Order ace and Time	893
13.2.1	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control	808 808	in Spa	ace and Time	893
13.2.1	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive	808	_	ace and Time INTRODUCTION: MAKING PATTERNS	893 893
13.2.1	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control		in Spa	ace and Time INTRODUCTION: MAKING PATTERNS	893
13.2.1	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive	808	20.1 20.1.1 20.1.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making	893 894 895
19.2.2	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection	808 809	in Spa 20.1 20.1.1	ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time	893 894 895 896
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity	808 809 809 810	20.1 20.1.1 20.1.2 20.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes	893 894 895
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins	808 809 809	in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration	893 894 895 896
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity	808 809 809 810	in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes	893 894 895 896 898
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors	808 809 809 810	in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly	893 894 895 896 898
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators	808 809 809 810 810	in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient	893 894 895 896 898 898
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment	808 809 809 810 810	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling	893 894 895 896 896 898 898
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators	808 809 809 810 810	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena	893 894 895 896 898 898 898
	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding	808 809 809 810 810 812 813	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS	893 894 895 896 896 898 898
19.2.2	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants	808 809 809 810 810 812	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing	893 894 895 896 898 898 905 912
19.2.2	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding	808 809 809 810 810 812 813	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS	893 894 895 896 898 898 898
19.2.2	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors	808 809 809 810 810 812 813 814	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns	893 894 895 896 898 898 905 912 914
19.2.2 19.2.3	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation	808 809 809 810 810 812 813 814 819 819	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement	893 894 895 896 898 898 898 905 912 914 914
19.2.2	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The <i>lac</i> Operon	808 809 809 810 810 812 813 814 819	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System	893 894 895 896 898 898 898 905 912 914 914
19.2.2 19.2.3	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation	808 809 809 810 810 812 813 814 819 819	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis	893 894 895 896 898 898 898 905 912 914 914 920 926
19.2.2 19.2.3	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The <i>lac</i> Operon The <i>lac</i> Operon The <i>lac</i> Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the	808 809 809 810 810 812 813 814 819 819 820 822	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION	893 894 895 896 898 898 898 905 912 914 914 926 926
19.2.2 19.2.3	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon	808 809 809 810 810 812 813 814 819 820 822 822	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis	893 894 895 896 898 898 898 905 912 914 914 920 926
19.2.2 19.2.3 19.2.4 19.2.5	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon Inducers Tune the Level of Regulatory Response	808 809 809 810 810 812 813 814 819 820 822 822 824 829	20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept	893 894 895 896 896 898 898 905 912 914 914 920 926
19.2.2 19.2.3	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon Inducers Tune the Level of Regulatory Response Other Regulatory Architectures The Fold-Change for Different Regulatory Motifs	808 809 809 810 810 812 813 814 819 820 822 822	20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4.1 20.4.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time	893 894 895 896 896 898 898 905 912 914 920 926
19.2.2 19.2.3 19.2.4 19.2.5	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon Inducers Tune the Level of Regulatory Response Other Regulatory Architectures The Fold-Change for Different Regulatory Motifs Depends Upon Experimentally Accessible Control	808 809 810 810 812 813 814 819 820 822 822 822 824 829 829	20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept	893 894 895 896 896 898 898 905 912 914 914 920 926
19.2.2 19.2.3 19.2.4 19.2.5	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon Inducers Tune the Level of Regulatory Response Other Regulatory Architectures The Fold-Change for Different Regulatory Motifs Depends Upon Experimentally Accessible Control Parameters	808 809 809 810 810 812 813 814 819 820 822 822 824 829	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes	893 894 895 896 898 898 898 905 912 914 914 926 931 932 935 935
19.2.2 19.2.3 19.2.4 19.2.5	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That Implement Negative Control Activators Are the Proteins That Implement Positive Control Genes Can Be Regulated During Processes Other Than Transcription The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA Polymerase Binding Probability Is Altered by Transcription Factors Activator Bypass Experiments Show That Activators Work by Recruitment Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants Equilibrium Constants Can Be Used To Determine Regulation Factors A Simple Statistical Mechanical Model of Positive and Negative Regulation The Iac Operon The Iac Operon The Iac Operon Has Features of Both Negative and Positive Regulation The Free Energy of DNA Looping Affects the Repression of the Iac Operon Inducers Tune the Level of Regulatory Response Other Regulatory Architectures The Fold-Change for Different Regulatory Motifs Depends Upon Experimentally Accessible Control	808 809 810 810 812 813 814 819 820 822 822 822 824 829 829	20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2	INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes SUMMARY AND CONCLUSIONS	893 894 895 896 898 898 898 899 905 912 914 914 926 931 935 944 947

_	ter 21 Sequences, Specificity,			Evolution and Drug Resistance	998
and E	volution	951	21.4.3	Viruses and Evolution The Study of Sequence Makes It Possible to Trace	1000
21.1	BIOLOGICAL INFORMATION	952		the Evolutionary History of HIV	1001
21.1.1	Why Sequences?	953		The Luria–Delbrück Experiment Reveals the	
21.1.2	Genomes and Sequences by the Numbers	957		Mathematics of Resistance	1002
21.2	SEQUENCE ALIGNMENT AND HOMOLOGY	960	21.4.4	Phylogenetic Trees	1008
21.2	Sequence Comparison Can Sometimes Reveal Deep	900	21.5	THE MOLECULAR RACIC OF FIRELITY	1010
	Functional and Evolutionary Relationships Between		21.5	THE MOLECULAR BASIS OF FIDELITY	1010
	Genes, Proteins, and Organisms	961	21.5.1	Keeping It Specific: Beating Thermodynamic Specificity	1011
21.2.1	The HP Model as a Coarse-Grained Model			The Specificity of Biological Recognition Often Far	
	for Bioinformatics	964		Exceeds the Limit Dictated by Free-Energy	
21.2.2		966		Differences	1011
	A Score Can Be Assigned to Different Alignments	966		High Specificity Costs Energy	1015
	Between Sequences Comparison of Full Amino Acid Sequences Requires	900	21.6	CHANNES AND CONCLUSIONS	1016
	a 20-by-20 Scoring Matrix	968	21.6	SUMMARY AND CONCLUSIONS	1016
	Even Random Sequences Have a Nonzero Score	970	21.7	PROBLEMS	1017
	The Extreme Value Distribution Determines the	5.0	21.8	FURTHER READING	1020
	Probability That a Given Alignment Score Would Be		21.9	REFERENCES	1021
	Found by Chance	971			
	False Positives Increase as the Threshold for		Chan	ter 22 Whither Physical Biology?	1023
	Acceptable Expect Values (also Called E-Values) Is	073	_	,	
	Made Less Stringent Structural and Functional Similarity Do Not Always	973	22.1	DRAWING THE MAP TO SCALE	1023
	Guarantee Sequence Similarity	976	22.2	NAVIGATING WHEN THE MAP IS WRONG	1027
	durance sequence similarity	370	22.2	NAVIGATING WITER THE MAI 15 WRONG	1027
21.3	THE POWER OF SEQUENCE GAZING	976	22.3	INCREASING THE MAP RESOLUTION	1028
21.3.1	Binding Probabilities and Sequence	977			
	Position Weight Matrices Provide a Map Between	070	22.4	"DIFFICULTIES ON THEORY"	1030
	Sequence and Binding Affinity Frequencies of Nucleotides at Sites Within a	978		Modeler's Fantasy	1031
	Sequence Can Be Used to Construct Position Weight			Is It Biologically Interesting?	1031
	Matrices	979		Uses and Abuses of Statistical Mechanics Out-of-Equilibrium and Dynamic	1032 1032
21.3.2	Using Sequence to Find Binding Sites	983		Uses and Abuses of Continuum Mechanics	1032
21.3.3	Do Nucleosomes Care About Their Positions on			Too Many Parameters	1032
	Genomes?	988		Missing Facts	1033
	DNA Sequencing Reveals Patterns of Nucleosome	000		Too Much Stuff	1033
	Occupancy on Genomes	989		Too Little Stuff	1034
	A Simple Model Based Upon Self-Avoidance Leads to a Prediction for Nucleosome Positioning	990		The Myth of "THE" Cell	1034
	a Frediction for Nucleosome Fositioning	330		Not Enough Thinking	1035
21.4	SEQUENCES AND EVOLUTION	993		3	
21.4.1	Evolution by the Numbers: Hemoglobin and		22.5	THE RHYME AND REASON OF IT ALL	1035
	Rhodopsin as Case Studies in Sequence Alignment	994	22.6	FURTHER READING	1036
	Sequence Similarity Is Used as a Temporal Yardstick		22.7	REFERENCES	1037
	to Determine Evolutionary Distances	994			
	Modern-Day Sequences Can Be Used to Reconstruct the Past	996	Index		1039
	tile i ast	220	HINCH		.055

Special Sections

There are five classes of special sections indicated with icons and colored bars throughout the text. They perform order of magnitude estimates, explore biological problems using computation, examine the experimental underpinnings of topics, and elaborate on mathematical details.

ш	F			٩	П	ı
ш	ш			П	ш	ı
ш	L			J	ш	ı
Πi	F	=	=	₹	ы	ı
	ь	-	-	a		J

$\overline{}$	\cap	MD	LIT	^ Т	\Box	NIAI	EXPL	$\bigcirc DA$	TL	\cap	ΝI
L	U	IVI	υı	AI	ıv	NAL		OKA.	1 1	O I	ľ

Sizing Up <i>E. coli</i>	3
Counting mRNA and Proteins by Dilution	4
Timing E. coli	10
Growth Curves and the Logistic Equation	10
Determining the Spring Constant of an Optical Trap	20
Numerical Root Finding	25
Determining Ion Channel Open Probability by Thresholding	28
Numerical Solution of the Cable Equation	70
Electrons in a Well of Finite Depth	73
Extracting Level of Gene Expression from Microscopy	
Images	81
The Gillespie Algorithm and Stochastic Models of	
Gene Regulation	84
Scaling of Morphogen Gradients	90
Performing Sequence Alignments Against a Database	97
Searching the <i>E. coli</i> Genome for Binding Sites	98

	Competition in the ATP Synthase	661
	Charge Pumping at Membranes	693
2.0	Charge Transfer During Depolarization	697
38	Solar Energy Fluxes	720
46	Sizing Up Cyanobacteria	722
00	Confinement Energies of Electrons	725
03	Number of Incident Photons Per Pigment Molecule	736
07	The Tunneling Length Scale	740
57	Distance Dependence of Tunneling Times	744
84	Photosynthetic Productivity on Earth	755
07 33	Number of Rhodopsin Molecules Per Rod	770
33	Dynamics of Transcription by the Numbers	837
17	Bicoid Concentration Difference Between Neighboring	
1 /	Nuclei	908
49	Genome Size and the Number of Genes	959
0.1		

ESTIMATE

Sizing Up E. coli	39
Cell-to-Cell Variability in the Cellular Census	44
Sizing Up Yeast	55
Membrane Area of the Endoplasmic Reticulum	60
Sizing Up HIV	68
Sizing Up the Slug and the Fruiting Body	75
Sizing Up Stripes in <i>Drosophila</i> Embryos	79
Sizing Up <i>C. elegans</i>	82
Timing E. coli	101
Timing the Machines of the Central Dogma	109
Timing Development	124
The Thermal Energy Scale	127
Moving Proteins from Here to There	128
Diffusion at the Synaptic Cleft	129
Moving Proteins from Here to There, Part 2	130
Ion Transport Rates in Ion Channels	130
Hemoglobin by the Numbers	143
The Energy Budget Required to Build a Cell	197
Osmotic Pressure in a Cell	266
End-to-End Probability for the <i>E. coli</i> Genome	319
The Size of Viral and Bacterial Genomes	322
Chromosome Packing in the Yeast Nucleus	324
Chromosome Organization in <i>C. crescentus</i>	327
The Eighth Continent	356
DNA Condensation in Bacteriophage φ29?	368
DNA Condensation in Bacteriophage φ29 Redux	373
The DNA Packing Compaction Ratio.	399
Sizing Up Nucleosomes	407
Sizing Up Membrane Heterogeneity	436
Vesicle Counts and Energies in Cells	456
Sizing Up Membrane Area in Mitochondria	464
Blood Flow Through Capillaries	493
Mechanics of Leukocyte Rolling	495
Rate of ATP Synthesis in Humans	575
The Rate of Actin Polymerization	577
Equilibrium Polymers?	606

Force Exerted During a Single Motor Step

-	
	/
	4.
	400
	AT 1
	S
- 70	

EXPERIMENTS

Myosin and Muscle Forces

P	robing Biological Structure	49
M	leasurements of Biological Time	92
G	enetics	139
В	iochemistry	141
M	leasuring Diffusive Dynamics	513
T	aking the Molecular Census	578
M	leasuring Motor Action	632
D	lynamics of Rotary Motors	636
D	ynamics of Light and Electrons	742
M	leasuring Gene Expression	804
M	leasuring the Process of Chemotaxis	874
S	equencing and Protecting DNA	954

MATH

The Partial Derivative	212
The Beauty of the Taylor Expansion	215
The Stirling Approximation	222
Counting Arrangements of Particles	239
One Person's Macrostate Is Another's Microstate	250
The Method of Lagrange Multipliers	254
The Gaussian Integral	261
Expanding in Sines and Cosines	332
The Gradient Operator and Vector Calculus	366
Fourth Roots of −1	472
Eigenvalues and Eigenvectors	595
The Poisson Distribution	779
Laplace Transforms and Convolutions	858
Linear Stability Analysis for the Genetic Switch	868
	The Beauty of the Taylor Expansion The Stirling Approximation Counting Arrangements of Particles One Person's Macrostate Is Another's Microstate The Method of Lagrange Multipliers The Gaussian Integral Expanding in Sines and Cosines The Gradient Operator and Vector Calculus Fourth Roots of -1 Eigenvalues and Eigenvectors The Poisson Distribution Laplace Transforms and Convolutions

627

TRICKS

64		
193	Differentiation with Respect to a Parameter	241
95	Averaging Sums of Random Variables	522
75	Doing Integrals by Differentiating With Respect to a	
77	Parameter	525
606	Dot Products to Find Amplitudes	792
527	Phase Portraits and Vector Fields	866

630

Map of the Maps

- **Part 1:** Map of Alfred Russel Wallace's voyage with the black lines denoting Wallace's travel route and the red lines indicating chains of volcanoes. From *The Malay Archipelago* (1869) by Alfred Russel Wallace.
- **Chapter 1:** Map of the world according to Eratosthenes (220 B.C.E.). Erastosthenes is known for, among many other things, his measurement of the circumference of the Earth, and is considered one of the founders of the subject of geography. From *Report on the Scientific Results of the Voyage of the H.M.S. Challenger During the Years 1872–76*, prepared under the superintendence of C. Wyville Thompson and John Murray (1895).
- **Chapter 2:** Population density in Los Angeles County, as determined in the 2000 census. Darker colors represent denser populations (up to 100,000 people per square mile). From the United States Census Bureau.
- **Chapter 3:** Sedimentary rock layers in the Grand Canyon. Geology and cross section by Peter J. Conley, artwork by Dick Beasley. From the United States National Park Service (1985).
- **Chapter 4:** Carta marina, a map of Scandinavia, by Olaus Magnus. A translation of the Latin caption reads: A Marine map and Description of the Northern Lands and of their Marvels, most carefully drawn up at Venice in the year 1539 through the generous assistance of the Most Honourable Lord Hieronymo Quirino. This detail shows the sea monsters in the ocean between Norway and Iceland.
- Part 2: Tourist map of Père Lachaise cemetery, Paris, France.
- **Chapter 5:** Airplane routes around the nearly spherical Earth. Courtesy of OpenFlights.com.
- **Chapter 6:** Josiah Willard Gibbs articulated the variational principle that shows how to find the equilibrium state of a system by maximizing the entropy. Gibbs spent his entire career in New Haven, Connecticut at Yale University. This 1886 map shows the university buildings during Gibbs' time. Source: Yale University Map Collection. Courtesy of the Yale University Map Collection.
- **Chapter 7:** County map of Virginia and West Virginia, drawn by Samuel Augustus Mitchell Jr. in 1864, after the American Civil War.
- **Chapter 8:** Aerial view of the hedge maze at Longleat Safari and Adventure Park, near Warminster, United Kingdom. Courtesy of Atlaspix/Alamy.
- **Chapter 9:** Topographic map of the Great Salt Lake (Utah, United States) and surrounding region. From the United States Geological Survey (1970).
- **Chapter 10:** Blueprint diagram of the Golden Gate Bridge, San Francisco, California, United States. Courtesy of EngineeringArtwork.com
- **Chapter 11:** Digital elevation map of Mount Cotopaxi in the Andes Mountains, near Quito, Ecuador. Blue and green correspond to the lowest elevations in the image, while beige, orange, red, and white represent increasing elevations. Courtesy of the NASA Earth Observatory (2000).
- Part 3: Migration tracks of the sooty shearwater, a small seabird, tracked with geolocating tags from two breeding colonies in New Zealand. Breeding season is shown in blue, northward migration in yellow, and wintering season and southward migration in orange. Over about 260 days, an individual animal travels about 64,000 km in a figure-8 pattern across the entire Pacific Ocean. From S. A. Shaffer et al., "Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer," *Proceedings of the*

- National Academy of Sciences USA, **103**: 12799–12802, 2006.
- **Chapter 12:** Worldwide distribution of ocean currents (warm in red, cold in green). Arrows indicate the direction of drift; the number of strokes on the arrow shafts denote the magnitude of the drift per hour. Sea ice is shown in purple. Prepared by the American Geographical Society for the United States Department of State in 1943.
- **Chapter 13:** Temperature map of the sun's corona, recorded by the Extreme Ultraviolet Imaging Telescope at the Solar and Heliospheric Observatory on June 21, 2001. Courtesy of ESA/NASA.
- **Chapter 14:** John Snow's map of the 1854 cholera outbreak in the Soho neighborhood of London. By interviewing residents of the neighborhood where nearly 500 people died of cholera in a ten-day period, Snow found that nearly all of the deaths occurred in homes close to the water pump in Broad Street, which he hypothesized was the source of the epidemic. Reproduced from *On the Mode of Communication of Cholera*, 2nd *Edition*, John Snow (1855).
- **Chapter 15:** Positron emission tomography (PET scan) map of a healthy human brain, showing the rate of glucose utilization in various parts of the right hemisphere. Warmer colors indicate faster glucose uptake. Courtesy of Alzheimer's Disease Education and Referral Center, a service of the National Institute on Aging (United States National Institutes of Health).
- **Chapter 16:** High speed train routes of France, mapped as a transit diagram. Courtesy of Cameron Booth.
- **Chapter 17:** Nile River delta at night, as photographed by the crew in Expedition 25 on the International Space Station on October 28, 2010. Courtesy of Image Science & Analysis Laboratory, Johnson Space Center, Earth Observatory, NASA/GSFC SeaWiFS Project.
- **Chapter 18:** Single-celled photosynthetic organisms such as the coccolithophore *Emiliana huxleyi* can form gigantic oceanic blooms visible from space. In this April 1998 image, the Aleutian Islands and the state of Alaska are visible next to the Bering Sea that harbors the algal bloom. Courtesy of NASA/GSFC SeaWiFS Project.
- **Part 4:** A map of the infant universe, revealed by seven years of data from the Wilkinson Microwave Anisotropy Probe (WMAP). The image reveals 13.7 billion year old temperature fluctuations (the range of ± 200 microKelvin is shown as color differences) that correspond to the seeds that grew to become the galaxies. Courtesy of NASA/WMAP Science Team.
- **Chapter 19:** Map of the Internet, as of September, 1998, created by Bill Cheswick. *Courtesy of* Lumeta Corporation 2000–2011. Published in Wired Magazine, December 1998 (issue 6.12).
- **Chapter 20:** The Sloan Great Wall measured by J. Richard Gott and Mario Juric shows a wall of galaxies spanning 1.37 billion light years. It stands in the Guinness Book of Records as the largest structure in the universe. Courtesy of Michael Blanton and the Sloan Digital Sky Survey Collaboration, www.sdss.org.
- **Chapter 21:** This map shows the patterns of human migration as inferred from modern geographical distributions of marker sequences in the Y chromosome (blue), indicating patrilineal inheritance, and in the mitochondrial DNA (orange), indicating matrilineal inheritance. Courtesy of National Geographic Maps, Atlas of the Human Journey.
- **Chapter 22:** "The Lands Beyond" drawn by Jules Feiffer for The Phantom Tollbooth (1961) by Norton Juster. Courtesy of Knopf Books for Young Readers, a division of Random House, Inc.