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Map of the Maps

Part 1: Map of Alfred Russel Wallace’s voyage with the black
lines denoting Wallace’s travel route and the red lines indicating
chains of volcanoes. From The Malay Archipelago (1869) by
Alfred Russel Wallace.

Chapter 1: Map of the world according to Eratosthenes (220
B.C.E.). Erastosthenes is known for, among many other things,
his measurement of the circumference of the Earth, and is
considered one of the founders of the subject of geography.
From Report on the Scientific Results of the Voyage of the H.M.S.
Challenger During the Years 1872–76, prepared under the
superintendence of C. Wyville Thompson and John Murray
(1895).

Chapter 2: Population density in Los Angeles County, as
determined in the 2000 census. Darker colors represent denser
populations (up to 100,000 people per square mile). From the
United States Census Bureau.

Chapter 3: Sedimentary rock layers in the Grand Canyon.
Geology and cross section by Peter J. Conley, artwork by Dick
Beasley. From the United States National Park Service (1985).

Chapter 4: Carta marina, a map of Scandinavia, by Olaus
Magnus. A translation of the Latin caption reads: A Marine map
and Description of the Northern Lands and of their Marvels, most
carefully drawn up at Venice in the year 1539 through the
generous assistance of the Most Honourable Lord Hieronymo
Quirino. This detail shows the sea monsters in the ocean
between Norway and Iceland.

Part 2: Tourist map of Père Lachaise cemetery, Paris, France.

Chapter 5: Airplane routes around the nearly spherical Earth.
Courtesy of OpenFlights.com.

Chapter 6: Josiah Willard Gibbs articulated the variational
principle that shows how to find the equilibrium state of a
system by maximizing the entropy. Gibbs spent his entire career
in New Haven, Connecticut at Yale University. This 1886 map
shows the university buildings during Gibbs’ time. Source: Yale
University Map Collection. Courtesy of the Yale University Map
Collection.

Chapter 7: County map of Virginia and West Virginia, drawn
by Samuel Augustus Mitchell Jr. in 1864, after the American
Civil War.

Chapter 8: Aerial view of the hedge maze at Longleat Safari
and Adventure Park, near Warminster, United Kingdom.
Courtesy of Atlaspix/Alamy.

Chapter 9: Topographic map of the Great Salt Lake (Utah,
United States) and surrounding region. From the United States
Geological Survey (1970).

Chapter 10: Blueprint diagram of the Golden Gate Bridge, San
Francisco, California, United States. Courtesy of
EngineeringArtwork.com

Chapter 11: Digital elevation map of Mount Cotopaxi in the
Andes Mountains, near Quito, Ecuador. Blue and green
correspond to the lowest elevations in the image, while beige,
orange, red, and white represent increasing elevations. Courtesy
of the NASA Earth Observatory (2000).

Part 3: Migration tracks of the sooty shearwater, a small
seabird, tracked with geolocating tags from two breeding
colonies in New Zealand. Breeding season is shown in blue,
northward migration in yellow, and wintering season and
southward migration in orange. Over about 260 days, an
individual animal travels about 64,000 km in a figure-8 pattern
across the entire Pacific Ocean. From S. A. Shaffer et al.,
“Migratory shearwaters integrate oceanic resources across
the Pacific Ocean in an endless summer,” Proceedings of the

National Academy of Sciences USA, 103: 12799–12802,
2006.

Chapter 12: Worldwide distribution of ocean currents (warm
in red, cold in green). Arrows indicate the direction of drift; the
number of strokes on the arrow shafts denote the magnitude of
the drift per hour. Sea ice is shown in purple. Prepared by the
American Geographical Society for the United States Department
of State in 1943.

Chapter 13: Temperature map of the sun’s corona, recorded
by the Extreme Ultraviolet Imaging Telescope at the Solar and
Heliospheric Observatory on June 21, 2001. Courtesy of
ESA/NASA.

Chapter 14: John Snow’s map of the 1854 cholera outbreak in
the Soho neighborhood of London. By interviewing residents of
the neighborhood where nearly 500 people died of cholera in a
ten-day period, Snow found that nearly all of the deaths
occurred in homes close to the water pump in Broad Street,
which he hypothesized was the source of the epidemic.
Reproduced from On the Mode of Communication of Cholera, 2nd

Edition, John Snow (1855).

Chapter 15: Positron emission tomography (PET scan) map of
a healthy human brain, showing the rate of glucose utilization
in various parts of the right hemisphere. Warmer colors indicate
faster glucose uptake. Courtesy of Alzheimer’s Disease
Education and Referral Center, a service of the National Institute
on Aging (United States National Institutes of Health).

Chapter 16: High speed train routes of France, mapped as a
transit diagram. Courtesy of Cameron Booth.

Chapter 17: Nile River delta at night, as photographed by the
crew in Expedition 25 on the International Space Station on
October 28, 2010. Courtesy of Image Science & Analysis
Laboratory, Johnson Space Center, Earth Observatory,
NASA/GSFC SeaWiFS Project.

Chapter 18: Single-celled photosynthetic organisms such as
the coccolithophore Emiliana huxleyi can form gigantic oceanic
blooms visible from space. In this April 1998 image, the
Aleutian Islands and the state of Alaska are visible next to the
Bering Sea that harbors the algal bloom. Courtesy of NASA/GSFC
SeaWiFS Project.

Part 4: A map of the infant universe, revealed by seven years
of data from the Wilkinson Microwave Anisotropy Probe (WMAP).
The image reveals 13.7 billion year old temperature fluctuations
(the range of ±200 microKelvin is shown as color differences)
that correspond to the seeds that grew to become the galaxies.
Courtesy of NASA/WMAP Science Team.

Chapter 19: Map of the Internet, as of September, 1998,
created by Bill Cheswick. Courtesy of Lumeta Corporation
2000–2011. Published in Wired Magazine, December 1998 (issue
6.12).

Chapter 20: The Sloan Great Wall measured by J. Richard Gott
and Mario Juric shows a wall of galaxies spanning 1.37 billion
light years. It stands in the Guinness Book of Records as the
largest structure in the universe. Courtesy of Michael Blanton
and the Sloan Digital Sky Survey Collaboration, www.sdss.org.

Chapter 21: This map shows the patterns of human migration
as inferred from modern geographical distributions of marker
sequences in the Y chromosome (blue), indicating patrilineal
inheritance, and in the mitochondrial DNA (orange), indicating
matrilineal inheritance. Courtesy of National Geographic Maps,
Atlas of the Human Journey.

Chapter 22: “The Lands Beyond” drawn by Jules Feiffer for The
Phantom Tollbooth (1961) by Norton Juster. Courtesy of Knopf
Books for Young Readers, a division of Random House, Inc.

xxx MAP OF THE MAPS


	Half Title
	Title
	Copyright
	Dedication
	Preface
	Acknowledgments
	Contents
	Contents in Detail
	Special Sections
	Map of the Maps

