Handbook of Experimental Pharmacology

Continuation of Handbuch der experimentellen Pharmakologie

Vol. 67/II

Editorial Board
G. V. R. Born, London · A. Farah, Rensselaer, New York
H. Herken, Berlin · A. D. Welch, Memphis, Tennessee

Advisory Board
S. Ebashi · E. G. Erdös · V. Ersparser · U. S. von Euler · W. S. Feldberg
G. B. Koelle · M. Rocha e Silva · J. R. Vane · P. G. Waser
Antibiotics

Containing the Beta-Lactam Structure

Part II

Contributors
P. Actor·M. C. Browning·N. H. Georgopapadakou·J. R. E. Hoover
K. C. Kwan·A. K. Miller·J. D. Rogers·R. B. Sykes·B. M. Tune
J. V. Uri

Editors
A. L. Demain and N. A. Solomon

Springer-Verlag Berlin Heidelberg New York Tokyo 1983
CHAPTER 12
Bacterial Enzymes Interacting with β-Lactam Antibiotics
N. H. GEORGOPAPADAKOU and R. B. SYKES. With 10 Figures

A. Introduction .. 1
 I. Classification of β-Lactam Antibiotics 3
 II. Mode of Action of β-Lactam Antibiotics 4
 1. Structure and Synthesis of Peptidoglycan 4
 2. The Tipper and Strominger Hypothesis for Penicillin Action . 7
 III. Classification of Enzymes Interacting with β-Lactam Antibiotics . 9
 1. Enzymes Acting on Peptidoglycan 9
 2. Enzymes Degrading β-Lactam Antibiotics 10

B. Bacterial Proteins Binding β-Lactam Antibiotics 12
 I. General ... 12
 II. Penicillin-Binding Proteins in Gram-Negative Bacteria 15
 1. Escherichia coli .. 15
 2. Other Enterobacteria .. 17
 3. Pseudomonads ... 20
 4. Other Bacteria .. 21
 III. Penicillin-Binding Proteins in Gram-Positive Bacteria ... 21
 1. Bacilli ... 21
 2. Micrococci .. 23
 3. Streptococci ... 24
 4. Actinomycetes .. 24

C. Enzymes Inhibited by β-Lactam Antibiotics 25
 I. DD-Carboxypeptidases 25
 1. DD-Carboxypeptidases in Gram-Negative Bacteria 30
 2. DD-Carboxypeptidases in Gram-Positive Bacteria 31
 II. Peptidoglycan Transpeptidase 35

D. β-Lactamases .. 36
 I. General ... 36
 II. β-Lactamases in Gram-Positive Bacteria 37
 1. Staphylococci ... 39
 2. Bacilli .. 40
 3. Streptomycetes .. 43
 4. Other Actinomycetes 43
CHAPTER 13

In Vitro and In Vivo Laboratory Evaluation of β-Lactam Antibiotics

A. K. MILLER

A. Historical

I. Penicillins

II. Cephalosporins

III. Cephamycins (7-α-Methoxy Cephalosporins)

IV. β-Lactams of Novel Structure

B. β-Lactams Laboratory Evaluation Procedures

I. Introduction

II. In Vitro Test Procedures

1. Spectrum of Activity and Sensitivity Tests

2. Speed of Action Test

3. Susceptibility Disc Test

4. Interaction and Synergy Tests

5. Effect on Morphology

6. Procedures Using Anaerobes

7. Factors Influencing In Vitro Tests

8. Enzymes and Resistance to β-Lactam Antibiotics

9. Automation and Miniaturization

10. In Vitro Models to Simulate In Vivo Conditions

III. In Vivo Test Procedures

1. Mouse Protection Test

2. Specialized Test Procedures

3. Tests Using Anaerobes

IV. In Vitro–In Vivo Relationships

C. Representative β-Lactam Agents

References
CHAPTER 14
\textit{ß}-Lactam Antibiotics: Structure–Activity Relationships. J. R. E. HOOVER
With 8 Figures

A. Introduction: Scope .. 119
 I. Structure ... 119
 II. Activity .. 121

B. Clinically Useful Penicillins .. 122
 I. Natural, Biosynthetic, and Related Penicillins 125
 II. Penicillinase-Resistant Penicillins 127
 III. Broad-Spectrum Penicillins 131
 1. \(\alpha\)-Aminopenicillins 132
 2. \(\alpha\)-Carboxy and \(\alpha\)-Sulfopenicillins 134
 3. Acylampicillins .. 136
 4. 6-Acylamino Alternatives: Quaternary Heterocyclic
 Aminopenicillanic Acids and 6-Amidinopenicillanic Acids 139
 5. A 6\(\alpha\)-Methoxy Penicillin (Temocillin) 142

C. Clinically Useful Cephalosporins 144
 I. Basic Structure–Activity Relationships 144
 II. \(ß\)-Lactamase-Sensitive Cephalosporins 149
 1. 7\(ß\)-Acylamino Group Modifications 149
 2. Metabolic Stability ... 153
 3. 3-Substituent Modifications 154
 III. Cephalosporins with Special Pharmacokinetic Properties 160
 1. Cephalosporins with High and Prolonged Serum Levels 161
 2. Cephalosporins Absorbed Orally 164
 IV. \(ß\)-Lactamase-Resistant Cephalosporins 168
 1. Cephalosporins with Moderate \(ß\)-Lactamase Resistance 168
 2. Cephamycins .. 172
 3. Cephalosporins with Significant \(ß\)-Lactamase Resistance 174
 V. Oxacephalosporins .. 180

D. Nonclassic \(ß\)-Lactams ... 185
 I. Penems and Carbapenems 185
 1. Carbapenems: Thienamycins, Olivanic Acids, and Related
 Structures .. 186
 2. Penems .. 197
 3. Oxapenems .. 202
 II. Monocyclic \(ß\)-Lactams 203
 1. Nocardicins .. 203
 2. Monobactams .. 206
 III. \(ß\)-Lactamase Inhibitors 212
 1. Penicillins and Cephalosporins as Inhibitors 212
 2. Progressive \(ß\)-Lactamase Inhibitors 214

E. Other Structure–Activity Relationships 226

References .. 226
A. Introduction

B. Penicillins

I. Benzylpenicillin (Penicillin G)

II. Phenoxyalkylynpenicillins

1. Phenoxyethylpenicillin (Penicillin V)
2. Pheneticillin
3. Propicillin
4. Phenbenicillin

III. Clometocillin

IV. Methicillin

V. Ancillin

VI. Nafcillin

VII. Isoxazolylpenicillins

1. Oxacillin
2. Cloxacillin
3. Dicloxacillin
4. Flucloxacillin

VIII. Ampicillin

1. Hetacillin
2. Pivampicillin
3. Bacampicillin
4. Talampicillin
5. Metampicillin
6. Methoxymethyl Ester of Hetacillin

IX. Amoxicillin

X. Azidocillin

XI. Epicillin

XII. Cyclacillin

XIII. Carbenicillin

1. Carindacillin
2. Carfecillin

XIV. Ticarcillin

XV. Sulbenicillin

XVI. Ureidopenicillins

1. Azlocillin
2. Mezlocillin
3. Piperacillin
4. Bayk 4999
5. BL-P1654

C. Cephalosporins

I. Cephalosporanic Acids

1. Cephalothin
2. Cephapirin
CHAPTER 16

Toxicology of β-Lactam Antibiotics. M. C. BROWNING and B. M. TUNE

A. Introduction .. 371

B. Local Reactions to Parenteral Administration ... 371
CHAPTER 17

Therapeutic Application of β-Lactam Antibiotics. J. V. Uri and P. Actor

A. Introduction ... 399

B. Penicillins in the Therapy of Human Infections 400
 I. The Penams: The Biosynthetic or Natural Penicillins 406
 1. Penicillin G (Benzylpenicillin) 406
 2. Penicillin V and the Acid-Stable Phenoxypenicillins 409
 II. The Penicillinase-Resistant Penicillins 410
 1. Methicillin ... 410
 2. Nafcillin ... 412
 3. Isoxazolyl Penicillins ... 413
 III. The Broad-Spectrum Aminopenicillins 414
 1. Ampicillin ... 415
 2. Esters of Ampicillin ... 417
 3. Amoxicillin .. 418
 4. Epicillin and Cyclacillin 419
 IV. The Antipseudomonal Penicillins 419
 1. Carbenicillin .. 420
 2. Ticarcillin ... 422
 V. The Amidinopenicillanic Acids – Amdinocillin 425
 VI. The Atypical β-Lactams ... 426
 1. The Monocyclic β-Lactams 426
 2. The Oxapenams .. 428
 3. The Carbapenems .. 428
 4. The Penems .. 429

C. Cephalosporins in the Therapy of Human Infections 429
 I. Cephalothin ... 433
 II. Cephaloridine ... 433
 III. Cefazolin .. 434
 IV. Cefamandole ... 435
 V. Cefoxitin .. 436
 VI. Cefmetazole ... 436
 VII. Cefuroxime ... 437
 VIII. Ceforanide ... 437
 IX. Cefonicid ... 438
 X. Third-Generation Cephalosporins 438
 1. Cefotaxime .. 439
 2. Ceftizoxime ... 441
 3. Moxalactam .. 441
 4. Cefoperazone .. 442
 5. Ceftriaxone ... 443
 6. Cefmenoxime .. 443
 7. Ceftazidime ... 443
 8. Cefotiam .. 444
 9. Cefsulodin ... 444
XI. The Oral Cephalosporins .. 445
 1. Cephalexin ... 445
 2. Cephradine ... 446
 3. Cefatrizine ... 446
 4. Cefaclor .. 446
 5. Cefroxadine, Cefadroxil, and Cephaloglycin 447

D. Antibacterial Chemoprophylaxis with the β-Lactam Antibiotics ... 447
 I. Prophylactic Uses in Medicine 448
 II. Prophylactic Uses in Surgery 451

E. Use of β-Lactam Antibiotics in Dental Medicine 453
F. Use of β-Lactam Antibiotics in Veterinary Practice 455

References ... 458

Subject Index .. 471